• 沒有找到結果。

1082 Calculus A 01-10, Mode 01-02 Makeup Midterm

N/A
N/A
Protected

Academic year: 2022

Share "1082 Calculus A 01-10, Mode 01-02 Makeup Midterm"

Copied!
9
0
0

加載中.... (立即查看全文)

全文

(1)

1082 Calculus A 01-10, Mode 01-02 Makeup Midterm

1. (15 pts) Consider the function

f(x, y) =⎧⎪⎪⎪

⎨⎪⎪⎪⎩

sin(xy)

x2+ y2 ,if (x, y) ≠ (0, 0), 0 ,if (x, y) = (0, 0).

(a) (3 pts) Is f(x, y) continuous at (0, 0)?

(b) (4 pts) Find fx(0, 0), fy(0, 0), and fx(x, y), fy(x, y) for (x, y) ≠ (0, 0).

(c) (2 pts) Write down the linear approximation of f(x, y) at (0, 0), L(x, y).

(d) (4 pts) Compute lim

(x,y)→(0,0)

f(x, y) − L(x, y)

x2+ y2 if it exists.

(e) (2 pts) Is f(x, y) differentiable at (0, 0)?

Solution:

(a) We consider polar coordinate, let x= r cos θ and y = r sin θ, then

f(x, y) = f(r, θ) =⎧⎪⎪⎪

⎨⎪⎪⎪⎩

sin(r2cos θ sin θ√ )

r2 ,if r≠ 0,

0 ,if r= 0.

By definition of continuous, we can consider the countinuity of f(x, y) at (x, y) = (0, 0) by taking r→ 0+. lim

r→0+f(r, θ) = lim

r→0+

sin(r2cos θ sin θ)

r = lim

r→0+

sin(r2cos θ sin θ)

r2cos θ sin θ ⋅ r cos θ sin θ.

Since both lim

r→0+

sin(r2cos θ sin θ)

r2cos θ sin θ and lim

r→0+r cos θ sin θ are exist with lim

r→0+

sin(r2cos θ sin θ) r2cos θ sin θ = 1 and lim

r→0+r cos θ sin θ= 0, then

rlim→0+

sin(r2cos θ sin θ)

r2cos θ sin θ ⋅ r cos θ sin θ = lim

r→0+

sin(r2cos θ sin θ) r2cos θ sin θ ⋅ lim

r→0+r cos θ sin θ= 1 ⋅ 0 = 0.

That is lim

(x,y)→(0,0)f(x, y) = f(0, 0), so we have f(x, y) is continuous at (0, 0).

(b) By definition of partial derivative at (0, 0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎨⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎩

fx(0, 0) = lim

h→0

f(h, 0) − f(0, 0)

h = lim

h→0 sin(h⋅0)

h2 − 0

h = 0

fy(0, 0) = lim

k→0

f(0, k) − f(0, 0)

k = lim

k→0 sin(0⋅k)

k2 − 0

k = 0

and we can derivative for(x, y) ≠ (0, 0) since f(0, 0) is differentiable except (x, y) = (0, 0).

⎧⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎨⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

fx(x, y) = cos(xy) ⋅ y ⋅

x2+ y2− sin(xy) ⋅12x2x2+y2 (√

x2+ y2)2 = y(x2+ y2) cos(xy) − x sin(xy) (x2+ y2)32

fy(x, y) = cos(xy) ⋅ x ⋅

x2+ y2− sin(xy) ⋅12x2y2+y2 (√

x2+ y2)2 = x(x2+ y2) cos(xy) − y sin(xy) (x2+ y2)32

(c) Linear approximation of f(x, y) at (0, 0) is

L(x, y) = f(0, 0) + fx(0, 0)x + fy(0, 0)y

= 0 + 0 + 0 = 0

Page 1 of 9

(2)

(d)

(x,y)→(0,0)lim

f(x, y) − L(x, y)

x2+ y2 = lim

(x,y)→(0,0)

sin(xy) x2+ y2. Consider two straight line x= y and x = −y then

⎧⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎩

(x,y)→(0,0)lim

sin(xy) x2+ y2 = lim

x→0

sin(x2) 2x2 = 1

2, if x= y

(x,y)→(0,0)lim

sin(xy) x2+ y2 = lim

x→0

sin(−x2) 2x2 = −1

2, if x= −y (d)

(x,y)→(0,0)lim

f(x, y) − L(x, y)

x2+ y2 = lim

(x,y)→(0,0)

sin(xy) x2+ y2. That is the limit lim

(x,y)→(0,0)

f(x, y) − L(x, y)

x2+ y2 does not exist.

(e) No, f(x, y) is not differentiable at (0, 0) since lim

(x,y)→(0,0)

f(x, y) − L(x, y)

x2+ y2 does not exist.

Page 2 of 9

(3)

2. (15 pts) Consider the level surface S defined by

S = {(x, y, z) ∈ R3 ∶ z5− xz4+ yz3= 1}.

This level surface defines z= z(x, y) implicitly as a differentiable function of x and y.

(a) (4 pts) Find an equation of the tangent plane at the point P(0, 0, z(0, 0).) (b) (4 pts) Use linear approximation at P to estimate the value z(0.02, −0.03).

(c) (5 pts) Find 2z

∂x∂y

(x,y)=(0,0)

.

(d) (2 pts) Find the directional derivative Duz(0, 0) along the direction ⃗u parallel to the vector (−3, 4).

Solution:

(a) Let F(x, y, z) = z5− xz4+ yz3 − 1, then S = {(x, y, z) ∈ R3 ∶ F (x, y, z) = 0}, then the normal vector of tangent plane at each point (x, y, z) is ∇F (x, y, z) = (−z4, z3, 5z4− 4xz3+ 3yz2), that is the normal vector at (0, 0, z(0, 0)) = (0, 0, 1) is (−1, 1, 5). Then the tangent plane at the point P(0, 0, 1) is −(x − 0) + (y − 0) + 5(z − 1) = 0.

(b) Linear approximate at P is L(x, y) = z(0, 0) + zx(0, 0)(x − 0) + zy(0, 0)(y − 0) = z(0, 0) − Fx(0, 0, 0)

Fz(0, 0, 0)(x − 0) −Fy(0, 0, 0)

Fz(0, 0, 0)(y − 0) ⇒ z(0.02, −0.03) = 1 +1

5⋅ 0.02 −1

5⋅ (−0.03) = 1.01

Actually, by tangent plane at P(0, 0, 1), −(0.02 − 0) + (−0.03 − 0) + 5(z(0.02, −0.03) − 1) = 0 ⇒ 5(z(0.02, −0.03) − 1) = 0.05 ⇒ z(0.02, −0.03) = 1 +0.05

5 = 1.01.

(c) Since ∂z

∂y = −Fy(x, y, z)

Fz(x, y, z) = − z3

5z4− 4xz3+ 3yz2 = −z 5z2− 4xz + 3y

2z

∂x∂y

(x,y)=(0,0) =

∂x( −z

5z2− 4xz + 3y)∣

(x,y)=(0,0)

= −zx(5z2− 4xz + 3y) + z(10zzx− 4(z + xzx)) (5z2− 4xz + 3y)2

(x,y)=(0,0)

= −15⋅ 5 + 1 ⋅ (10 ⋅ 1 ⋅15 − 4)

52 = −1 + (−2)

25 = − 3 25 (d) D⃗uz(0, 0) = ∇z(0, 0) ⋅ ⃗u = (1

5,−1

5) ⋅ ± (−3 5 ,4

5) = ± 7 25

Page 3 of 9

(4)

3. (14 pts) Let f(x, y) = y(x + 1)2.

(a) (6 pts) Find and classify critical point(s) of f(x, y).

(b) (8 pts) Find the extreme values of f(x, y) on the region R = {(x, y)∣x2− 1 ≤ y ≤ 3}.

Solution:

(a) ∇f(x, y) = (2y(x + 1), (x + 1)2) = (0, 0) iff (x, y) = (−1, y)

⇒⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fxx= 2y

fxy = 2(x + 1) = fyx

fyy= 0

⇒ D∣(x,y)=(−1,y)= fxxfyy− fxy2(x,y)=(−1,y)= 0 ∀y ∈ R.

If y > 0, f(x, y) ≥ 0 for all x ≠ −1,then (−1, y) is local minimum. With same argument for y< 0, (−1, y) is local maximun. The last one is (−1, 0) is a saddle point.

(b) R= {(x, y)∣x2− 1 ≤ y ≤ 3}.

First, we have the local minimum in the region equal to 0 when (x, y) = (−1, y) and y > 0.

Second, we consider the boundary x2− 1 ≤ y ≤ 3 ⇒ x2− 1 = 3 with −2 ≤ x ≤ 2 and y = 3 then we have the local maximum when (x, y) = (2, 3) is equal to 27.

The last, y= x2−1 ⇒ f(x, y) = f(x, x2−1) = (x2−1)(x+1)2= g(x) with −2 ≤ x ≤ 2, then g(x) = 2x(x+1)2+2(x2−1)(x+1) = 2(x+1)(x2+x+x2−1) = 2(x+1)(2x2+x−1) = 2(x+1)2(2x−1) = 0 for x= −1, 1

2 ⇒ (x, y) = (1 2,−3

4) has local minimum is equal to −27 16.

Page 4 of 9

(5)

4. (10 pts) Let C be the hyperbola formed by the intersection of the cone 4x2= y2+3z2 and the plane x+ y = 6. Find the maximum and the minimum distance between the origin and the point on C (if exist) by the method of Lagrange multipliers.

Solution:

That is to find the extreme of d(x, y, z) = x2+y2+z2 with the restriction x+y = 6 and 4x2 = y2+3z2 By Lagrange Multipliers

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2x= λ + µ8x 2y= λ + µ(−2y) 2z= 0 + µ(−6z)

⇒⎧⎪⎪⎪

⎨⎪⎪⎪⎩

λ= (2 − 8µ)x = (2 + 2µ)y µ= −1

3 or z = 0 ⇒⎧⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎩

λ=14 3 x= 4

3y or

λ= (2 − 8µ)x = (2 + 2µ)y, z = 0 (i) If λ= 14

3 x= 4

3y, x+ y = 6 and 4x2= y2+ 3z2

⇒ 3 14λ+3

4λ= 6 ⇒ 27

28λ= 6 ⇒ λ = 56

9 ⇒ (x, y) = (4 3,14

3 ) ⇒ (x, y, z) not exists in R3. (ii) If λ= (2 − 8µ)x = (2 + 2µ)y, z = 0, x + y = 6 and 4x2 = y2+ 3z2

⇒ 4x2 = y2 ⇒ 2x = ±y and x + y = 6 ⇒ (x, y) = (2, 4) or (−6, 12) Since there is no maximun distance between origin and the point on hyperbola C, we have the minimun at (2, 4, 0) is equal to √

20.

Page 5 of 9

(6)

5. (12 pts)

(a) Compute ∫

1 0

cos−1y 0

sin x(1 + sin2x)13dxdy.

(b) Let f(x) = ∫x1e−t2dt. Find the average value of f on the interval[0, 1].

Solution:

(a)

1 0

cos−1y 0

sin x(1 + sin2x)13dxdy = ∫

π 2

0

cos x 0

sin x(1 + sin2x)13dydx= ∫

π 2

0

sin x(1 + sin2x)13 cos xdx

= 1

2(1 + sin2x)43 ⋅3 4∣

π 2

0

=3⋅ 243 8 −3

8

(b) Average value of f = ∫

1 0 f dx

1− 0 = ∫01

1 x

e−t2dtdx

⇒ ∫01

1 x

e−t2dtdx= ∫01

t 0

e−t2dxdt= ∫01te−t2dt= −1 2 e−t21

0

=1

2(1 − e−1)

Page 6 of 9

(7)

6. (12 pts) Find the center of mass of a lamina

D= {(x, y) ∈ R2(x − 2)2

4 + y2 ≤ 1 and x ≤ 2}

whose density function at any point is proportional to the square of its distance from the line x= 2.

Solution:

Assume the coordinate of center of mass is (¯x, ¯y), then obvious ¯y = 0.

⇒ ¯x ⋅ ∬

D

C(x2+ y2)dA = ∬

D

Cx(x2+ y2)dA ⇒ ¯x = ∬Dx(x2+ y2)dA

D(x2+ y2)dA

⎧⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎨⎪⎪

⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎪

D

(2 − x)2dA= ∫02

1(x−2)24

1(x−2)24 (2 − x)2dydx= ∫022

1−(x − 2)2

4 (2 − x)2dx

D

x(2 − x)2dA= ∫02

1(x−2)24

1(x−2)24 x(2 − x)2dydx= ∫022

1−(x − 2)2

4 x(2 − x)2dx

Let t= x− 2

2 ⇒ dx = 2dt

⎧⎪⎪⎪⎪⎪⎪⎪⎪

⎪⎨⎪⎪⎪⎪⎪

⎪⎪⎪⎪⎩

2 0 2

1−(x − 2)2

4 (2 − x)2dx= ∫−102√

1− t24t2⋅ 2dt

2 0

2

1−(x − 2)2

4 x(2 − x)2dx= ∫−102√

1− t2⋅ (2t + 2) ⋅ 4t2⋅ 2dt Let t= cos θ ⇒ dt = − sin θdθ

⎧⎪⎪⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎪

⎪⎩

− ∫−102√

1− t24t2⋅ 2dt = ∫ππ 2

16 sin θ cos2θ sin θdθ= 16 ∫ππ 2

sin2θ cos2θdθ

− ∫−102√

1− t2⋅ (2t + 2) ⋅ 4t2⋅ 2dt = ∫ππ 2

32 sin θ cos2θ sin θ(cos θ + 1)dθ = 32 ∫ππ 2

sin2θ cos3θ+ sin2θ cos2θdθ

⎧⎪⎪⎪⎪⎪⎪⎪⎪

⎨⎪⎪⎪⎪⎪⎪⎪

⎪⎩

16∫

π

π 2

sin2θ cos2θdθ= 2 ∫ππ 2

sin22θd2θ= 2 ∫ππ 2

cos22θd2θ= 2 ∫ππ 2

sin2+ cos2

2 d2θ= 2π − π = π

32∫

π

π 2

sin2θ cos3θdθ= 32 ∫ππ 2

sin2θ(1 − sin2θ) cos θdθ = 32 (1

3sin3θ−1

5sin5θ)π

π 2

= −64 15

⇒ ∬

D

(2 − x)2dA= π and ∬

D

x(2 − x)2dA= −64 15+ 2π

∴¯x = 6415

π ⇒ center of mass : (¯x, ¯y) = (2 − 64 15π, 0)

Page 7 of 9

(8)

7. (12 pts) Use spherical coordinates to evaluate ∫

3

0

3−y2

3−y2

4−x2−y2 1

√ 1

x2+ y2+ z2dzdxdy.

Solution:

By sperical coordinates, let ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x= ρ cos θ sin ϕ y= ρ sin θ sin ϕ z= ρ cos ϕ

, where 0≤ ρ ≤ 2 0 ≤ ϕ ≤ π and 0 ≤ θ ≤ 2π.

⇒ ∫

3

0

3−y2

3−y2

4−x2−y2 1

√ 1

x2+ y2+ z2dzdxdy = ∫0π

π 3

0

2 sec ϕ

ρ2sin ϕ

ρ dρdϕdθ=π 2 ∫

π 3

0 (4 − sec2ϕ) sin ϕdϕ

= π 2 ∫

π 3

0

4 sin ϕ− sec ϕ tan ϕdϕ = π

2(−4 cos ϕ − sec ϕ)∣

π 3

0

= π 2

Page 8 of 9

(9)

8. (10 pts) Compute∬Rln(x2y+x)dA, where R is the region bounded by curves xy = 1, xy = 3, x = 1 and x= e.

Solution:

By change variables, let ⎧⎪⎪

⎨⎪⎪⎩

u= xy, 1 ≤ u ≤ 3

v= x, 1 ≤ v ≤ e ⇒ ∣J∣ = ∣∂(x, y)

∂(u, v)∣ = ∣ 0 1 1 v

−u v2

∣ = 1 v

⇒ ∬Rln(x2y+ x)dA = ∫1e

3 1

ln(uv + v)∣J∣dudv = ∫1e

3 1

ln[(u + 1)v]1 vdudv

= ∫1e13ln(u + 1) + ln v

v dudv

= ∫1e[(u + 1) ln(u + 1) − (u + 1)]31

1

v + (3 − 1)ln v v dv

= ln e[(3 + 1) ln(3 + 1) − (3 + 1) − 2 ln 2 + 2] + (3 − 1) 2 (ln e)2

= 8 ln 2 − 4 − 2ln2 + 2 + 1 = 6 ln 2 − 1

Page 9 of 9

參考文獻

相關文件

臺中市政府教育局 420018 臺中市豐原區陽明街36號 http://www.tc.edu.tw 建檔時間: 2022-10-01 08:02.

Advanced Calculus Midterm Exam (Continued) November 18,

◎課程相關資訊請洽:財團法人中山管理教育基金會TEL:07-3321068#22 林小姐.

另有很多學者,並不使⽤Axiology這個字,⽽以Philosophy of Value ,Theory of

文件編號:01-AIR-02 版次:A 頁數:1/3 訂修日期:西元 2011 年 03 月 15 日

一個立方體無蓋的盒子體積為 10 立方公尺, 底部的長是寬的兩倍, 底的材料成本是每平 方公尺 10 元; 側面的材料成本是 每平方公尺 6 元。

試卷以英文命題。應考時請攜帶學生證、應考文具用品,但不得使用手機、電子計

試卷以英文命題。應考時請攜帶學生證、應考文具用品,但不得使用手機、電子計