• 沒有找到結果。

1.3 函數運算

N/A
N/A
Protected

Academic year: 2022

Share "1.3 函數運算"

Copied!
13
0
0

加載中.... (立即查看全文)

全文

(1)

第 1 章 函數 (Functions)

目錄

1.1 數、 區間、 不等式 . . . . 1

1.2 函數 . . . . 3

1.3 函數運算 . . . . 4

1.4 函數圖形 . . . . 5

1.5 常見之函數類型 . . . . 5

1.6 函數特性 . . . . 7

1.7 反函數 . . . . 7

1.8 指數函數 . . . . 8

1.9 對數函數 . . . . 9

1.10 三角函數 . . . . 10

1.11 反三角函數 . . . . 13

(1) 介紹有關函數的一些基本觀念 (2) 介紹一些基本函數的圖形

(3) 介紹指數函數, 對數函數, 三角函數與反三角函數

1.1 數 (Numbers)、 區間 (Intervals)、 不等式 (Inequalities)

符號 1.1.1. (1) 我們以下列符號來表示各數系:

N 自然數系 (正整數, natural numbers), Z 整數系 (integers),

Q 有理數系 (rational numbers), R 實數系 (real numbers), C 複數系 (complex numbers)。

(2) 表示 “對所有”(for all) ,

表示 “存在”(there exists),

∃ ! 表示 “存在唯一”(there is a unique)。

(2)

第 1 章 函數 1.1 數、 區間、 不等式

區間

定義 1.1.2. (1) 有限區間:

(i) 開區間 (open intervals): (a, b) = {x| a < x < b}。

(ii) 閉區間 (closed intervals): [a, b] = {x| a ≤ x ≤ b}。

(iii) 半開區間: [a, b) = {x| a ≤ x < b}, (a, b] ={x| a < x ≤ b}。

(2) 無限區間: (a,∞) = {x| x > a}, [a,∞) = {x| x ≥ a}, (−∞, b) = {x| x < b}, (−∞, b] = {x| x ≤ b}。

(3) 在以上各區間中, a、b 稱為邊界點 (boundary points)。 在各有限區間中 (a, b) 上的點, 或無限 區間中 (a, ∞) 及 (−∞, b) 之點, 稱為內點 (interior points)。

[註] (i) 無限區間 (a, ∞) 不可記為 (a, ∞]。 (ii) ∞ 不是 (a, ∞) 的邊界點。

定義 1.1.3. 令 I1, I2, I3,· · · 為一序列區間, 則

n i=1

Ii 表示 I1∪ I2∪ · · · ∪ In,

i=1

Ii 表示 I1∪ I2∪ I3∪ · · · . 交集符號也有同樣表法。

例 1.1.4. 求:

(1) ∩

n=1

(0,n1] , (2) ∩

n=1

[0,1n) , (3) ∪

n=1[−n, n], (4) ∪

n=2

[1

n, 1− 1n] . 不等式

性質 1.1.5. 令 a, b, c ∈ R, 則 (1) 若 a < b, 則 a + c < b + c。

(2) 若 a < b, c < d, 則 a + c < b + d。

(3) 若 a < b, c > 0, 則 ac < bc。

(4) 若 a < b, c < 0, 則 ac > bc。

(5) 若 0 < a < b, 則 1a > 1b

(3)

第 1 章 函數 1.2 函數

例 1.1.6. 解以下各不等式:

(1) 2x− 3 < x + 4 ≤ 3x − 2。

(2) x3 > x

(3) (2− x)(1 + x)2x3 ≤ 0。

(4) −2 < 2x− 3 x + 1 ≤ 1。

絕對值

性質 1.1.7. a, b∈ R, 則 (1) |ab| = |a||b|,

(2) |a + b| ≤ |a| + |b|, (3) |a| − |b| ≤ |a − b|。

例 1.1.8. 解下列絕對值不等式:

(1) |5 − 2x| < 3,

(2) |x − 1| − |x − 10| ≥ 5.

1.2 函數 (Functions)

函數的呈現方式

1.2.1. (i) 以文字方式描述。 例:(i) 圓面積與半徑的平方成正比; (ii) 小於或等於 x 的質數個數。

(ii) 以數值方式描述。 例: 如人口數圖表。

(iii) 以圖形方式描述。 例: 如地震圖。

(iv) 以數學式描述。

例 1.2.2. 面積為25的直角三角形, 將斜邊長 h 以周長 p 表出。

例 1.2.3. 一個立方體無蓋的盒子體積為 10 立方公尺, 底部的長是寬的兩倍, 底的材料成本是每平 方公尺 10 元; 側面的材料成本是 每平方公尺 6 元。 將盒子的總成本以底之寬的函數表出。

例 1.2.4. 某地之計程車費率為起跳75元, 超過兩公里後每 500 公尺 5 元, 將費用對里程的函數寫 出。

函數定義

定義 1.2.5. (1) 函數 (function) f : A → B 是一個對應, 滿足: 對所有 a ∈ A, 存在惟一 b ∈ B, 使得 f 將 a 對應到 b。 即 ∀a ∈ A, ∃ ! b ∈ B 使得 f(a) = b。

(2) A稱為 f 的定義域 (domain); B 稱為 f 的對應域 (codomain); f(A) = {f(a)|a ∈ A} ⊂ B 稱為 f 的值域 (range)。 [註] f 可視為從 A 到 f(A) 的函數。

定義域與值域

(4)

第 1 章 函數 1.3 函數運算 註 1.2.6. 若 f(x) 是個以數學式定義的實值函數, 但未指明其定義域, 則其定義域即為使該數學式 有意義之所有 x 值。

例 1.2.7. 如圖。 (a) 求 f(1) 及 f(5) 之值; (b) f 之定義域及值域分別為何?

例 1.2.8. 令 f(x) =√

2 + x− x2,求其定義域與值域。

例 1.2.9. 求函數 f(x) =√

x2− 1 + 1

4− x2 的定義域與值域。

例 1.2.10. 求函數 f(x) =√ sin

x 的定義域與值域。

一對一與映成

定義 1.2.11. (1) 一個函數 f 若滿足: “x1 6= x2 則 f(x1)6= f(x2)”, 則 f 稱為一對一 (one-to- one) 函數。

(2) 若 f 之值域等於對應域, f 稱為映成 (onto) 函數。

例 1.2.12. 證明 y = x3 為一對一函數。

例 1.2.13. 令 Z+=N ∪ {0}。 f 為從 Z+× Z+ 對應到 Z+ 的函數,

f (m, n) = (m + n)(m + n + 1)

2 + m.

試證: f 是一對一且映成的函數。

1.3 函數運算

1.3.1. (1) 四則運算:

(i) (f ± g)(x) = f(x) ± g(x), Dom(f ± g) = Dom f ∩ Dom g。

(ii) (f · g)(x) = f(x)g(x), Dom(f · g) = Dom f ∩ Dom g。

(iii) (fg)(x) = f (x)g(x), Domfg = Dom f ∩ Dom g ∩ {x|g(x) 6= 0}。

(2) 合成運算:

(f ◦ g)(x) = f(g(x)), Dom(f ◦ g)(x) = {x ∈ Dom(g)|g(x) ∈ Dom f}.

例 1.3.2. 設 f(x) = x, g(x) = 1x,且 h(x) = (f · g)(x) = x ·x1 = 1, 則函數 h 的定義域 Dom h 應為 R − {0}, 而非 R。

例 1.3.3. 令 F (x) = cos2(x + 9)。 求函數 f, g, h 使得 F = f ◦ g ◦ h。

例 1.3.4. 令 f(x) =√

x, g(x) =√

2− x, 求 f ◦ g, g ◦ f, f ◦ f, g ◦ g 及它們的定義域。

例 1.3.5. 若 f0(x) = x+1x 且 fn+1= f0◦ fn, n = 0, 1, 2, . . . , 求 fn(x)的公式。

(5)

第 1 章 函數 1.4 函數圖形

1.4 函數圖形

函數圖形

定義 1.4.1. 若 A, B ⊂ R, 則 f 稱為實數值函數 (real valued function), 集合 {(x, f(x)) : x ∈ A} 稱為 f 的圖形 (graph)。

註 1.4.2. (1) 垂直線判別法: 一個圖形是函數圖形的充要條件是任一垂直線與其至多交於一點。

(2) 一個函數是一對一的充要條件為其圖形與每一水平線至多交於一點。

函數圖形的變動

1.4.3. (1) 鉛直方向平移: y = f(x) + k。

(2) 水平方向平移: y = f(x + h)。

(3) 鉛直方向伸縮: y = cf(x)。

(4) 水平方向伸縮: y = f(cx)。

(5) y =−f(x) 是 y = f(x) 對x-軸的鏡射。

(6) y = f (−x) 是 y = f(x) 對y-軸的鏡射。

例 1.4.4. 由 y =

x 之圖形作以下各函數之圖形: y =

x− 2, y =

x− 2, y = −√ x, y = 2√

x, y =√

2x, y =√

−x。

例 1.4.5. 作圖 f(x) = x2+ 6x + 10例 1.4.6. 作圖 y = 1 − sin 2x。

例 1.4.7. 作圖 f(x) = 1−x1例 1.4.8. 作圖 f(x) = |x2− 1|。

例 1.4.9. 對不同的 c 作圖 f(x) = x3+ cx例 1.4.10. 作圖 f(x) = sin 50x。

例 1.4.11. 作圖 f(x) = sin x + 1001 cos 100x 例 1.4.12. 求方程式 cos x = x 的解。

1.5 常見之函數類型

分段定義的函數 例 1.5.1. (1) |x| =

{ x , x≥ 0,

−x , x < 0.

(2) f (x) =



−x , x < 0, x2 , 0≤ x ≤ 1, 1 , x > 1.

(6)

第 1 章 函數 1.5 常見之函數類型

(3) 將圖中的函數以數學式寫出。

(4) 最大整數函數, 高斯函數, 地板函數 (greatest integer function, Gauss function, floor func- tion)

bxc = n, 若 n ≤ x < n + 1, n ∈ Z。 bxc 即小於或等於 x 的最大 整數。

(5) 天花板函數 (ceiling function)

dxe = n + 1, 若 n < x ≤ n + 1, n ∈ Z。 dxe 即大於或等於 x 的最小整數。

例 1.5.2. 如何以 bxc 表出 dxe ? 例 1.5.3. 作圖 |x − y| + |x| − |y| ≤ 2。

例 1.5.4. 作圖 x4− 4x2− x2y2+ 4y2 = 0。

例 1.5.5. (1) 一個數列 (sequence) {an} 可視為定義在 N 上的函數, 即 f(n) = an。 (2) 數列亦可用遞迴公式 (recursive formula) 來定義。 例如

{ a1 = a2 = 1,

an = an−1+ an−2, n≥ 3, 此數列稱為 Fibonacci 數列。 事實上, 可證明

an= 1

5 [(

1 + 5 2

)n

(

1−√ 5 2

)n] .

基本函數

1.5.6. (1) 線性函數 (linear function): f(x) = mx + b。

(2) 冪次函數 (power function): f(x) = xn。 (i) n ∈ N。

(ii) −n ∈ N。

(iii) n = m1 ∈ Q。

(iv) n ∈ R。

(3) 多項式函數 (polynomial function): P (x) = anxn+ an−1xn−1+· · · + a1x + a0。an 6= 0, 則 P (x) 的次數 (degree) 為 n。

若 n = 2, 則稱為二次函數 (quadratic function); 若 n = 3, 則稱為三次函數 (cubic func- tion)。

(4) 有理函數 (rational function): f(x) = P (x)Q(x), 其中 P (x), Q(x) 為多項式。

(5) 代數函數 (algebraic function): 將多項式函數反覆作有限次四則及開方運算而得。

(6) 三角函數 (trigonometric function)。

(7) 反三角函數 (inverse trigonometric function)。

(7)

第 1 章 函數 1.6 函數特性 (8) 指數函數 (exponential function): f(x) = ax, a > 0, a 6= 1。 注意, 與冪次函數比較兩者不

同之處。

(9) 對數函數 (logarithmic function): f(x) = logax, a > 0, a6= 1。

(10) 超越函數 (transcendental function): 非代數函數。

(11) 基本函數 (elementary function): 將有理函數, 冪次函數, 三角函數, 反三角函數, 指數函數, 對數函數反覆作有限次四 則, 合成及開方運算而得。

[註] 我們將在本章後四節簡要地介紹這些函數。

1.6 函數特性

奇偶性

定義 1.6.1. (1) 若 ∀x ∈ Dom f, f(−x) = f(x), 則 f(x) 稱為偶函數 (even function)。

(2) 若 ∀x ∈ Dom f, f(−x) = −f(x), 則 f(x) 稱為奇函數 (odd function)。

註 1.6.2. (1) 奇函數之圖形對原點對稱; 偶函數之圖形對 y−軸對稱。

(2) 任一 定義在實數上的函數必可寫成一個奇函數和一個偶函數的和, 且其表法是惟一的。

例 1.6.3. (1) 若 g(x) 為奇函數, 則對 g(0) 可下什麼結論?

(2) 若 g(x) 為偶函數, 則對 g(0) 可下什麼結論?

例 1.6.4. 判斷以下的奇偶性: (a) f(x) = 4x5− 3x, (b) f(x) = 4x6+ πx2− 3, (c) f (x) = 2 + 3x3

例 1.6.5. 判斷 bxc 的奇偶性。

例 1.6.6. 作圖 y = |x2− 4|x| + 3|。

昇降性

定義 1.6.7. (1) 若 ∀x, y ∈ I, x < y, 則 f(x) < f(y), 則稱 f(x) 在上 I 為遞增 (或上昇 increasing )。

(2) 若 ∀x, y ∈ Dom f, x < y, 則 f(x) > f(y), 則稱 f(x) 在上 I 為遞減 (或下降 decreasing )。

1.7 反函數 (Inverse Functions)

定義 1.7.1. 若 f 為一對一函數, 其定義域為 D, 值域為 R, 則其反函數 (inverse function) f−1 : R → D 定義為 f−1(b) = a⇔ f(a) = b, 其中 a ∈ D 且 b ∈ R。

註 1.7.2. (1) f−1(y) = x⇔ f(x) = y。

(2) f−1 的定義域=f 的值域; f−1 的值域=f 的定義域。

(3) f−1(x)6= f (x)1 = (f (x))−1

(8)

第 1 章 函數 1.8 指數函數

(4) (f−1◦ f)(x) = x, ∀x ∈ Dom f。

(5) (f ◦ f−1)(y) = y,∀y ∈ Dom f−1 = Rangef

(6) 若 f 為 D 上的嚴格上昇 (下降) 函數, 則 f(x) 為一對一且有反函數。

(7) y = f (x) 與 y = f−1(x)之圖形對 x = y 直線對稱。

例 1.7.3. 求 f(x) = x3+ 2 之反函數。

例 1.7.4. 求 y = x2, x≥ 0 之反函數。 x ≤ 0 呢?

例 1.7.5. 作 f(x) =√

−1 − x 及其反函數的圖形。

例 1.7.6. g(x) = sin x:

(i) 定義在 [0, π] 上時, 不是一對一;

(ii) 定義在 [−π/2, π/2] 上時為嚴格遞增, 所以是一對一; 故可定義反函數 sin−1 : [−1, 1] → [−π/2, π/2]。

1.8 指數函數 (exponential functions)

例 1.8.1. 在2000年,100元存入銀行, 以 5.5% 的年利率複利計算, 則在 r 年後本利和若干?

註 1.8.2. (1) 現考慮形如 f(x) = ax 之函數。 就不同的 x 值而言, 其意義如下:

x = n, n ∈ Z ⇒ an = a× · · · × a.

x =−n ⇒ a−n = (1a)n.

x = 1n ⇒ an1 = n

a.

x = q/p, (p, q) = 1, p, q ∈ Z ⇒ aq/p = (p a)q.

(2) 若 a > 0, x = r 為無理數, 則先取 x 為有理數, 當 x 越來越接近 r 時, ax 會越來越接近某定 值, 此值即定義為 ar

(3) 綜合上述, 可得到以 a 為底的指數函數 f(x) = ax。 此定義使得 f(x) 的圖形沒有“孔”或“跳 躍”, 即為連續函數。

例 1.8.3. 定義無理指數 22: 令 an

2 的小數點後第 n 位數字, 即

2 = 1.a1a2a3a4· · · , 則可以定義

2

2

= lim

n→∞21.a1a2···an, 其中 1.a1a2· · · an 均為有理數。

性質 1.8.4. 若 a, b > 0, x, y ∈ R, 則 (1) ax· ay = ax+y

(2) a−x = a1x。 (3) aaxy = ax−y

(9)

第 1 章 函數 1.9 對數函數

(4) (ax)y = axy = (ay)x。 (5) (ax)· bx = (ab)x。 (6) abxx = (ab)x, b6= 0。

例 1.8.5. (1) (52)2 . (2) 7π· 8π .

性質 1.8.6. (1) 自然指數函數為 y = ex。 其中 e 是一特定數值, 使指數函數 y = ex 與 y-軸相交 處的斜率為 1。

(2) 此數值 e 大約為 2.718281828 · · · 。 (3) 又當 x 很大時, (1 +x1)x 很接近 e。

(4) ex 亦可記為 exp(x)。

註 1.8.7. (1) y = ekx(k6= 0) 通常作為指數成長或衰變的模型。

當 k > 0, y = y0ekx 稱為指數成長;

當 k < 0, y = y0ekx 稱為指數衰變。

(2) 連續複利: 設本金為 A, 年利率為 r。 若計息的時間間隔很短, 即 A(1 +nr)nx 中的 n 很大的時 候, 則在 x 年後, 本利和會接近 Aerx。 因此, 連續複利為一種指數成長。

例 1.8.8. 投資公司通常以連續複利計算投資的成長, 在 2000 年投資 100 元, 年利率 5.5%, 估計 2004 年的資金總額。

例 1.8.9. C14 的衰變常數為 1.2 · 10−4。 若原本 C14 的量為 A, 預測在 866 年後, 衰變所餘的量 為何?

1.9 對數函數 (Logarithm Functions)

定義 1.9.1. 以 a 為底的對數函數定義為 y = ax 的反函數 (a 6= 1, a > 0), 記為 logax註 1.9.2. (1) logax = y ⇔ ay = x

(2) loga(ax) = x, x∈ R。

(3) alogax= x, x > 0 。 (4) log2x 在計算科學上常用。

(5) logex 常記為 ln x, 稱為自然對數。

(6) log10x 常記為 log x, 稱為常用對數。

性質 1.9.3. 對 b > 0, x > 0, a > 0, a 6= 1, 對數函數滿足:

(1) logabx = logab + logax。 (2) logaxb = logab− logax

(10)

第 1 章 函數 1.10 三角函數

(3) loga1x =− logax。 (4) logaxr = r logax。 (5) ln e = 1

(6) ax = ex ln a。 (7) logax = ln xln a

例 1.9.4. 5−3x = e−3x ln 5

例 1.9.5. 解方程式 3log37− 4log42 = 5(log5x−log5x2)例 1.9.6. 求方程式 e5−3x = 10 的解。

例 1.9.7. 作圖 y = ln(x − 2) − 1。

例 1.9.8. Sarah 拿 1000 元投資, 年利率 5.5%, 以連續複利計息, 則何時可達到 2500 元?

例 1.9.9. 釙210的衰變常數為 5 × 10−3,求半生期 (half life)。

例 1.9.10. 證明 f(x) = ln(x +√

x2+ 1) 是奇函數, 並求其反函數。

1.10 三角函數(Trigonometric Functions)

定義 1.10.1. (三角函數 Trigonometric Functions) (1) 銳角 (acute angles):

sin θ = 對邊斜邊, cos θ = 鄰邊斜邊, tan θ = 對邊鄰邊, cot θ = 鄰邊

對邊, sec θ = 斜邊

鄰邊, csc θ = 斜邊 對邊. (2) 一般角 (general angles):

sin θ = y, cos θ = x, tan θ = y x, cot θ = x

y, sec θ = 1

x, csc θ = 1 y. 性質 1.10.2. (1) 特別角函數值:

sin cos tan cot sec csc

0 0 1 0 x 1 x

30 12 23 1 3

3 23 2 45 12 12 1 1

2 2 60 23 12

3 1

3 2 2

3

90 1 0 x 0 x 1

(2) 函數正負:

(11)

第 1 章 函數 1.10 三角函數

(3) 定義域與值域:

sin : R → [−1, 1], cos : R → [−1, 1], tan : R −{(

n + 12) π}

→ R, cot : R − {nπ} → R, sec : R −{(

n + 12) π}

→ R − (−1, 1), csc : R − {nπ} → R − (−1, 1).

(4) 圖形:

(5) 週期:

sin, cos, sec, csc :最小週期 2π; tan, cot : 最小週期 π.

(6) 奇偶性:

sin, tan, cot, csc :奇函數; cos, sec : 偶函數.

(7) 換角公式:

f (nπ + θ) =±f(θ), f((

n +12)

π + θ)

=±cof(θ).

( ± 之決定: 假設 0 < θ < π2, 視 f 在 nπ + θ 處之正負值而定。) (8) 倒數公式:

sin θ = 1

csc θ, cos θ = 1

sec θ, tan θ = 1 cot θ. (9) 平方公式:

sin2θ + cos2θ = 1, tan2θ + 1 = sec2θ, cot2θ + 1 = csc2θ.

(10) 和角公式 (addition and subtraction formula):

sin(α± β) = sin α cos β ± cos α sin β, cos(α± β) = cos α cos β ∓ sin α sin α, tan(α± β) = tan α± tan β

1∓ tan α tan β. (11) 倍角公式:

sin 2α = 2 sin α cos α, cos 2α = cos2α− sin2α = 2 cos2α− 1 = 1 − 2 sin2α.

(12) 半角公式:

sinα 2 =±

√1− cos α

2 , cosα 2 =±

1 + cos α 2 , tanα

2 =±

√1− cos α

1 + cos α = 1− cos α

sin α = sin α 1 + cos α. (正負號視左式的正負值而定。)

(12)

第 1 章 函數 1.10 三角函數

(13) 三倍角公式:

sin 3α = 3 sin α− 4 sin3α, cos 3α = 4 cos3α− 3 cos α.

(14) 和差化積:

sin α + sin β = 2 sinα + β

2 cosα− β 2 , sin α− sin β = 2 cosα + β

2 sinα− β 2 , cos α + cos β = 2 cosα + β

2 cosα− β 2 , cos α− cos β = −2 sinα + β

2 sinα− β 2 . (15) 積化和差:

sin α cos β = 1

2[sin(α + β) + sin(α− β)] , cos α sin β = 1

2[sin(α + β)− sin(α − β)] , cos α cos β = 1

2[cos(α + β) + cos(α− β)] , sin α sin β =−1

2[cos(α + β)− cos(α − β)] .

定理 1.10.3. 令 ∠A, ∠B, ∠C 為一三角形的三個角, a, b, c 分別為其對應邊之長, 則 (1) 正弦定律 (law of sines):

a

sin A = b

sin B = c sin C. (2) 餘弦定律 (law of cosines):

c2 = a2+ b2− 2ab cos C.

(3) 面積公式:

三角形面積 = 1

2ab sin C.

定理 1.10.4. (n 倍角公式)

(1) sin nα = bn−12 c

k=0

(−1)k( n

2k+1

)cosn−2k−1α sin2k+1α

=(n

1

)cosn−1α sin α−(n

3

)cosn−3α sin3α+· · ·+

{

(−1)n−22 cos α sinn−1α , n 為偶數 (−1)n−12 sinnα , n 為奇數 .

(2) cos nα = bn2c

k=0

(−1)k(n

2k

)cosn−2kα sin2kα

= cosnα−(n

2

)cosn−2α sin2α +· · · +

{ (−1)n2 sinnα , n 為偶數 (−1)n−12 cos α sinn−1α , n為奇數 . [註](n

i

)= i!(nn!−i)!.

(13)

第 1 章 函數 1.11 反三角函數

1.11 反三角函數 (Inverse Trigonometric Functions)

定義 1.11.1. 以下函數 (1) sin x : [−π2,π2]→ [−1, 1], (2) cos x : [0, π]→ [−1, 1], (3) tan x : (−π2,π2)→ (−∞, ∞), (4) cot x : (0, π)→ (−∞, ∞),

(5) sec x : [0,π2)∪ [π,2 )→ (−∞, −1] ∪ [1, ∞), (6) csc x : (0,π2]∪ (π,2 ]→ (−∞, −1] ∪ [1, ∞) 為一對一, 因此有反函數。 分別為

y = sin−1x, y = cos−1x, y = tan−1x, y = cot−1x, y = sec−1x, y = csc−1x註 1.11.2. (1) sin−1x又可寫為 arcsin x。

(2) (sin x)−1 表示 sin x1 。 (3) sinnx = (sin x)n, n ∈ N;

sin xn= sin(xn), n ∈ Z.

(4) sin−2x表示什麼意思?

例 1.11.3. 求函數 f(x) =(

sin−1(x−1))−1

的定義域。

例 1.11.4. 求值 sin−1(23)。 例 1.11.5. 求值 cos−1(12)。 例 1.11.6. 求值 tan(arcsin13)。

例 1.11.7. 若 α = sin−1 23 , 求 cos α, tan α, cot α, sec α 及 csc α。

性質 1.11.8. (1) sin−1(sin x) = x; π2 ≤ x ≤ π2; cos−1(cos x) = x, 0≤ x ≤ π。

(2) sin(sin−1x) = x, −1 ≤ x ≤ 1; cos(cos−1x) = x, −1 ≤ x ≤ 1。

(3) sin−1(−x) = − sin−1x。 (4) cos−1x + cos−1(−x) = π。

例 1.11.9. 化簡 cos(tan−1x)例 1.11.10. 求 sec(tan−1 x3)。 例 1.11.11. 令 f(x) = sin(

sin−1x)

, g(x) = sin−1(sin x)。 (1) 求 f, g 的定義域。

(2) 化簡 f(x) 及 g(x)。

(3) 作 y = f(x) 及 y = g(x) 之圖形。

參考文獻

相關文件

如圖,斜線部分的面積為 37 平方公分,試求正方形

*小咪的長方形零錢 包,周長是28公分,請 找出小咪的零錢包。 *請找出面積是16 平方公分的圖形。 *請找出面積是8平 方公分且周長是12公 分的圖形。 *老爺爺拿出一條長18

=8 公尺。若搭建舞臺的費用為每平方公尺 100 元,則甲平臺的邊長為 公尺時,能使搭 建費用達最低,其最低費用為

請利用方格紙在上面畫出長 16 公分、寬 12 公分的長方形,找出可以等分這個長 方形的正方形。.. 請利用方格紙在上面畫出長 20 公分、寬

*小咪的長方形零錢 包,周長是28公分,請 找出小咪的零錢包。 *請找出面積是16 平方公分的圖形。 *請找出面積是8平 方公分且周長是12公 分的圖形。 *老爺爺拿出一條長18

在一張長50公分,寬30公分的長方形畫 紙上,畫上一個最大的正方形,其餘的 就剪掉。請問最大正方形面積為多少?剪

老王想圍出一塊長方形土地來種瓜,用來圍土地的鐵絲長度為 32 公尺。請問所圍出的長方形土

今有一間長 76 公尺、寬 28 公尺的教室要鋪上正方型磁磚(邊長都是