• 沒有找到結果。

PgTR iP h s j

N/A
N/A
Protected

Academic year: 2022

Share "PgTR iP h s j"

Copied!
53
0
0

加載中.... (立即查看全文)

全文

(1)

國 立 中 央 大 學

數 學 研 究 所

碩 士 論 文

雙正交凌波函數於血壓與 交感神經活性訊號分析之應用

研 究 生:羅 文 仁

指導教授:單 維 彰 博士

中 華 民 國 九 十 二 年 六 月 十 九 日

(2)

國立中央大學圖書館 碩博士論文授權書

(91 年 5 月最新修正版)

本授權書所授權之論文全文與電子檔,為本人於國立中央大學,撰寫 之碩/博士學位論文。(以下請擇一勾選)

( v )同意 (立即開放)

( )同意 (一年後開放),原因是:

( )同意 (二年後開放),原因是:

( )不同意,原因是:

以非專屬、無償授權國立中央大學圖書館與國家圖書館,基於推動讀 者間「資源共享、互惠合作」之理念,於回饋社會與學術研究之目的,

得不限地域、時間與次數,以紙本、光碟、網路或其它各種方法收錄、

重製、與發行,或再授權他人以各種方法重製與利用。以提供讀者基 於個人非營利性質之線上檢索、閱覽、下載或列印。

研究生簽名: 羅 文 仁

論文名稱: 雙正交凌波函數於血壓與交感神經活性訊號分析之應用 指導教授姓名: 單 維 彰

系所 : 數 學 所 o博士 R碩士班 學號: 90221006

日期:民國 92 年 6 月 19 日

備註:

1. 本授權書請填寫並親筆簽名後,裝訂於各紙本論文封面後之次頁(全文電 子檔內之授權書簽名,可用電腦打字代替)

2. 請加印一份單張之授權書,填寫並親筆簽名後,於辦理離校時交圖書館(以 統一代轉寄給國家圖書館)

3. 讀者基於個人非營利性質之線上檢索、閱覽、下載或列印上列論文,應依 著作權法相關規定辦理。

(3)

¿b

¦9Š0ä$Ê 0.02 ƒ 1.7 Hz íä0¸ˇq, >>ÿ%x|wŠ0×üí?‰ ú

>>ÿ%º4dÔìä0‰, @v}¨A°ä0í¦9‰ ¥ÿukªWû˝í{æ

Í7mUTÜí{æ³Þ, ¦šìÜDZ sž²u.e x, °vZ sž²6u׶

}mUTÜj¶íŽ- ĤÊøı³, ÅH7¦šìÜ£w½b41‚àbM }j¶V Rû×àZ sž²ít Ê˙íªŸjÞ, 6úàSUà MATLAB VªW0§Z sž²õTj¶#7ypüí·H

jZ sž²ÊmU}&,@à˜, O~šƒbÄxe_@4í ”¢” DœQíl

µÆ, ZAÑmU}&íÇø_²Ï ÊVÖ~šƒb2, £>~šƒbQ¡ú˚íÔ 4, ªUmU}&!‹.ßÞR, Ĥ²Ï£>~šƒbVªW¦9D>>ÿ%º4m U}& FJÊùı³, z£>~šƒbóÉø…dø<cÜ ßZ, 6½hcÜ Battle- Lemar´e ¸ Meyer ~šƒb 7Ñ7\Mdíêc4, Êúı³6>H7ÞÓõðDm U¦)j¶ ƒ7ûı, zø<@àÊä$}&DvÈåóÉ$l¾, $ød7j„, c ÜD}& |(, Bb×ÛbW}&j¶D!‹n

(4)

ñ“

øı ¦šìÜDZ sž² 1

1.1 Nyquist ¦šìÜ . . . 1

1.2 Z sž² . . . 2

1.3 MATLAB, FFT( ), IFFT( ) . . . 5

ùı £>~šƒb 6 2.1 Battle-Lemari´e ~šƒb . . . 6

2.2 Meyer ~šƒb . . . 11

2.3 MRA (Multiresolution Analysis) . . . 13

2.4 £>~šƒb . . . 17

2.5 ê1½í‘K . . . 18

2.6 ˙š[bt . . . 22

úı ÞÓõðDmU¦) 28 3.1 AÑŒé¶} . . . 28

3.2 ÌAÑŒé¶} . . . 29

ûı ä$}&DvÈå 31 4.1 Cross-Correlation . . . 31

4.2 Cross-Covariance . . . 31

4.3 CSD D PSD . . . 32

4.4 Phase ƒbDž²ƒb (Transfer Function) . . . 33

4.5 Coherence . . . 35

4.6 Bartlett D Welch j¶ . . . 36

(5)

üı bW}&!‹Dn 39

5.1 }&j¶ . . . 39

5.2 ˙š[b¦) . . . 40

5.3 ~š}jƒ . . . 40

5.4 !‹Dn . . . 41

¡5d. 48

(6)

øı ¦šìÜDZ sž²

mUTÜí{æ³, ¦šìÜDZ sž²u.e!… x, 6umUTÜíŽ- FJÊ¥

øı³, Bbܤsá3æJ£àSUà MATLAB ªWõT

1.1 Nyquist ¦šìÜ

Ñ)ƒ.ÜöíbPmU, úéªmU¦šÿéí½b ¦šä0 (sampling frequency) ¬ QímU, ³Ÿ¶ømU½V; ¦šM/vÈ (duration) ¬s, ̶×)œQíä$

¦šìÜÉ[ƒsK9, øu¦šä0íòQ, ùu¦šM/vÈíÅs

cìbPmU|ת¿ä0 (ä ) Ñ fmax, |üª¿ä0Ñ fmin, ¦šìÜÿuJ-s_

‘K:

1. ¦šä0 ≥ 2fmax

2. ¦šM/vÈ ≥ 1/fmin

2fmax ¢˚ Nyquist ä0 ÉbÅ—,Hs_‘K, éªmUÿ?J¦š(íbPmU½

õT,, b¨|Dä$ú@íä0dW, ÿÛbnj¦šìÜ 7%(ÊRû×àZ sž² tv, 6TXÇøimV ú@ä0Wj¶

(7)

1.2 Z sž²

#ìƒb f (x) ∈ L1(R)T L2(R) †wZ sž²ÿu f (ω) =ˆ

Z

−∞

f (x)e−iωxdx

7

f (x) = 1 2π

Z

−∞

f (ω)eˆ iωxdω ÿu ˆf (ω) íZ sLž²

%â Euler t

e±iωx= cos(ωx) ± i sin(ωx)

)ø, cos ÊÀPvÈ ([0, 1]) qíËÓä0u w , ¥šíä0M}¨A˙ªŸví˚×

I ω 7→ 2πω ªW‰b‰², ठω ÿ}uö£íËÓä0 ½ŸZ sž²t

f (ω) =ˆ Z

−∞

f (x)e−i2πωxdx

Lž²t

f (x) = Z

−∞

f (ω)eˆ i2πωx

Z sž²DLž²ít(, Zªªø¥Rû×àZ sž² (DFT) ít

cqç |x| > A2 v f (x) = 0 , † f (ω) =ˆ

Z

−∞

f (x)e−i2πωxdx = Z A2

A

2

f (x)e−i2πωxdx

z [−A2,A2] } N ¨, I N ÑXb, U) ∆x = NA , I

N N

(8)

°vcq˛ø f (xn) , Ñ7¯U,íjZ, I

g(x) = f (x)e−2iπωx

Í(@àG$¶dbM }, ZªJû| }Mí¡N,lu Z A2

A

2

g(x)dx ≈ ∆x

2 {g(−A 2) + 2

N 2−1

X

n=−N2+1

g(xn) + g(A 2)}

Ü,ø_õMíZ‰, . à }M, ]ªJÑ7líjZ, 7I g(−A2) = g(A2), FJ

f (ω) =ˆ Z A2

A

2

g(x)dx

≈ ∆x

N 2

X

n=−N2+1

g(xn)

= A N

N 2

X

n=−N2+1

f (xn)e−2iπωxn

ƒ¤ ˆf (ω) ZªJúLSí ω V°M

Í(.â²ìÖý¸¨<í ω b\Uà âk¦šä0u NA, / NA ≥ 2fmax I Ω =

N

A, † fmax = 2 FJ ω í¸ˇu [−2,2] ¢ÄѦšM/vÈÑ A, FJ 1/fmax = A, ]|üª¿ä0Ñ 1

A Uà|üª¿ä0çTä0–Èí~’È

∆ω = 1 A

† ˆf (ω) É?Ê

ωk= k∆ω, k = −N 2 . . .N

2

,¦M ÄÑÉ N _õíM\àÊ },l,, ¥#7ø_ßÜâé ω ¦ N _Mÿß

FJ¦

k = −N

2 + 1 . . .N 2

(9)

/

Ω = N ∆ω = N

A, ∆x∆ω = 1 N

I

fn = f (xn), Fk =

N 2

X

n=−N2+1

fne−i2πnkN

f (ωˆ k) ≈ A N

N 2

X

n=−N2+1

f (xn)e−i2πωkxn

= A N

N 2

X

n=−N2+1

fne−i2πnkN

= A NFk

FJ, #ì N _õM fn, DFT ÿuø fnž²A Fk í(4ø¦ 7¥< Fk (ÿªR

 ˆf (ωk) Ï.Öÿu NAFk, ƒ¤ZêA×àZ sž²tíRû

cqÊ [−Ω2 ,2] q,lZ sLž²í }, ×àZ sLž²t (IDFT) 6ªJ%âó

°íRû¬˙1)ƒéN×àZ sž²tí!‹:

f (xn) ≈ Ω N

N 2

X

k=−N2+1

f (ωˆ k)ei2πxnωk

= Ω N

N 2

X

k=−N2+1

f (ωˆ k)ei2πnkN

ʤZ.y;H

(10)

1.3 MATLAB, FFT( ), IFFT( )

BbªJòQà,øRû|í DFT t, ÊÚ72Ÿ|ž²DLž²˙ Jø&Ñ N í²¾ f bªW DFT, UàRûtFŸ|í˙ø O(N2) íl¾ lFÛí vÈ}óçªh, 7F‚0§Z sž² (FFT) ÿu DFT 0§Æ¶

MATLAB ³s_ƒ, }u fft( ) D ifft( ), ªàVúbWªW0§Z sž²DLž

² ʤ, BbHUà¥s_ƒV6ŒªŸ˙ ç˙QYƒ²¾ f (, }lŒ&

N u´ÑXb, à‹.Í, †f f 1¢l, yVZãÊ fft( ) ƒªW« Ä fft( ) ƒ…™íŸ¶, FŠíä0A}·}D£íä0A}>²P0æ[ FJʪW fft( ) ( ÿ.âzŠíä0A}½h”V, Í(y ,ø_b NA ¥šÿ}D,øFRûí!‹

ó°

f=fft(f);

f=[f(N/2+2:N) f(1:N/2+1)];

f=A*f/N;

DFT ˙Ò¨

J,Uà MATLAB FŸ|í˙Ò¨ M)·<íu, ªWLž²v, JbLž²í²¾u â fft( ) F`¨íu, †.âyz£Šä0ú|(yªWLž² ´†øû_.£üí!‹

7É B (?¹,øí Ω) .ÎJ N íŸÄÊk ifft( ) ˛z N1 ¨ÖÊq7

f=[f(N/2:N) f(1:N/2-1)];

f=ifft(f);

f=B*f;

IDFT ˙Ò¨

(11)

ùı £>~šƒb

ÖÍ£>í~šƒbnuBbí3i, OuBb6Y“ Battle-Lemari´e ¸ Meyer ~šƒ b, 1½hcÜøZ

2.1 Battle-Lemari´e ~šƒb

Battle-Lemari´e wavelets ÿu‚à£>“íŸÜ, ø!…š‘ƒb (B-spline) ¨A wavelets

JI φ(x) u Battle-Lemari´e wavelets íAƒb (scaling function) I φs(x) Ñ p ¼

!…š‘ƒb, /I Suppφs(x) ú˚k x = 0 (J p uXb), Cú˚k x = 12 (J p ÑJ b) Ĥ {φs(x − k)}k∈Z u(4Ö  ÑjZ–c, ¥³í)U p D [1] øš; ç p = 1 v, ÿuøOíɼš‘ƒb, 6ÿuj]ƒb (box function)

!…š‘ƒb˛uAƒb, ;W [1, 4” 3.4], Jbé {φs(x − k)} $Aø £†!, . âÅ—

X

k=−∞

| ˆφs(ω + 2kπ)|2 = 1 (2.1.1)

˛ø

φˆs(ω) = e−iω2σsin(ω2)

ω 2

p

w2

σ =





1, p uJb 0, p uXb

ç p ≥ 2 ív`, (2.1.1) u.A í, FJI H(ω) =

X | ˆφs(ω + 2kπ)|2

(12)

† H(ω) }u 2π /0£íU‚ƒb, ĤI ˆφ D ˆφs ÈíÉ[Ñ

φ(ω) =ˆ 1

pH(ω)φˆs(ω)

* [5, p88] )ø

H(2ω) = −sin2p(ω) (2p − 1)!

 d2p−1

2p−1cot(ω)

p = 2, H(ω) = 13 +23cos2(ω2)

p = 3, H(ω) = 152 + 1115cos2(ω2) + 152 cos4(ω2)

I m0(ω) u φ(x) íÔƒb, †

m0(ω) =

φ(2ω)ˆ φ(ω)ˆ

= pH(ω) ˆφs(2ω) pH(2ω) ˆφs(ω)

= 1 2

X

k=−∞

cke−ikω

¥šÿªJvƒ ck 7 ck ̤Ö_ÝÉ[b, O˘kÖá¾à, ck ú˚k x = 0 C x = 12 J-Ü, Ë,7 p = 2, 3, 4, 5 í ck, w¦Ÿíj¶Ñ

|

n

X

k=−n

ck− 2| ≤ 5 × 10−6

(13)

k ck k ck 1 1.15632663044579 10 0.00072356251301 2 0.56186292858765 11 -0.00031720285555 3 -0.09772354847998 12 -0.00017350463597 4 -0.07346181335547 13 0.00007828566487 5 0.02400068439163 14 0.00004244222575 6 0.01412883469138 15 -0.00001954273439 7 -0.00549176158313 16 -0.00001052790655 8 -0.00311402901546 17 0.00000492117905 9 0.00130584362611

p=2

k ck k ck

1 0.96218850337647 14 0.00005149189024 2 0.19510923625013 15 -0.00049372120202 3 -0.17654342735281 16 -0.00001800199152 4 -0.02934097454448 17 0.00019929573525 5 0.05937163254037 18 0.00000645605761 6 0.00599366802040 19 -0.00008104108370 7 -0.02137287194074 20 -0.00000236237046 8 -0.00158880221461 21 0.00003314796576 9 0.00806884459996 22 0.00000087836323 10 0.00047350887755 23 -0.00001362322068 11 -0.00312788862797 24 -0.00000033091386 12 -0.00015251802585 25 0.00000562112308 13 0.00123483234718

p=3

(14)

k ck k ck 1 1.08347151256866 17 0.00079186999511 2 0.61365927344264 18 0.00065352962214 3 -0.07099595988486 19 -0.00040359352543 4 -0.15561584376755 20 -0.00032858869439 5 0.04536924029542 21 0.00020653439292 6 0.05949363315412 22 0.00016635055029 7 -0.02429097832036 23 -0.00010606378924 8 -0.02543084221422 24 -0.00008468217554 9 0.01228286171785 25 0.00005463412644 10 0.01159864029621 26 0.00004330399578 11 -0.00615725880956 27 -0.00002821716465 12 -0.00549057846550 28 -0.00002222839431 13 0.00309247829086 29 0.00001460738679 14 0.00266173875568 30 0.00001144675909 15 -0.00156092382332 31 -0.00000757744078 16 -0.00131125702104

p=4

(15)

k ck k ck 1 0.94230165749406 22 0.00004787742388 2 0.23935992558848 23 -0.00049967097120 3 -0.19570263414422 24 -0.00002541971835 4 -0.06300189335224 25 0.00029121541201 5 0.09290180706792 26 0.00001365185942 6 0.02154391441627 27 -0.00017028132917 7 -0.04843594992729 28 -0.00000740280973 8 -0.00821303447623 29 0.00009984794930 9 0.02609527570506 30 0.00000404735857 10 0.00342535357307 31 -0.00005869053564 11 -0.01436521645402 32 -0.00000222859178 12 -0.00153122737290 33 0.00003457175320 13 0.00803102176857 34 0.00000123475901 14 0.00072110789898 35 -0.00002040281402 15 -0.00454212409729 36 -0.00000068786968 16 -0.00035284122449 37 0.00001206099474 17 0.00259182385834 38 0.00000038506747 18 0.00017766463859 39 -0.00000714042396 19 -0.00148934274931 40 -0.00000021649660 20 -0.00009143746086 41 0.00000423299342 21 0.00086066342350

p=5

(16)

2.2 Meyer ~šƒb

I m0(ω) uAƒb φ(x) íÔƒb, † m0(ω) u 2π U‚ƒb, ú Meyer ~šƒb7 k, wÔƒbì2Ñ

m0(ω) =













1, |ω| ≤ π3 β(ω), π3 ≤ |ω| ≤ 3

0, 3 ≤ |ω| ≤ π

;W [1, 4” 3.5], Û²Ï β(ω) U) m0(ω) Å—

|m0(ω)|2+ |m0(ω + π)|2 = 1, ∀ω ∈ R

J φ(x) Å—

φ(ω) = mˆ 0(ω 2) ˆφ(ω

2)

† {φ(x − k)} u£†! FJø,Þí./RÆ, ªJ)ƒ

φ(ω) =ˆ

Y

p=1

m0(ω 2p)

âk

m0(ω2) = 0, |ω| ≥ 3

m0(2ω2) = m0(2ω3) = m0(2ω4) = . . . = 1, |ω| ≤ 3

FJ ˆφ(ω) ÿªJ\“A

φ(ω) =ˆ





m0(ω2), |ω| ≤ 3 0, |ω| > 3

I φ(x) u ˆφ(ω) íZ sLž², † {φ(x − k)} ÿ}u£†!

(17)

°ší;¶, I m1(ω) u ψ(x) íÔƒb, U) ˆψ(ω) Å—

ψ(ω) = mˆ 1(ω 2) ˆφ(ω

2)

;W [1, (3.77)] )ø

m1(ω) = −e−iωm0(ω + π)

ψ(ω) =ˆ





m1(ω2)m0(ω4), |ω| ≤ 3 0, |ω| > 3

]

ψ(ω) =ˆ

















0, |ω| ≤ 3 m1(ω2), 3 ≤ |ω| ≤ 3 e−iω2m0(ω4), 3 ≤ |ω| ≤ 3

0, |ω| > 3

I ψ(x) Ñ ˆψ(ω) íZ sLž², † {ψ(x − k)} 6uø £†!

%âJ,íRû, ªc Meyer ~ší£†!u.ñøí, ²Ï_çí β(ω) ¯¯ m0(ω) í ì2, ÿªJû|ø £†! J-uø_™ÄíWä

I

β(ω) = cos[π2v(3|ω|π − 1)], π3 ≤ |ω| ≤ 3

w2 v(x) uËí¼Gƒb, Å—J-s_‘K:

v(x) =





0, x ≤ 0 1, x ≥ 1

(18)

¸

v(x) + v(1 − x) = 1

²Ï

v(x) = x4(35 − 84x + 70x2− 20x3)

φ(ω) =ˆ













1, |ω| ≤ 3 cos[π2v(3 |ω| − 1)], 3 ≤ |ω| ≤ 3

0, |ω| ≥ 3

ψ(ω) =ˆ

















0, |ω| ≤ 3 e2 sin[π2v(3 |ω| − 1)], 3 ≤ |ω| ≤ 3 e2 cos[π2v(3 |ω| − 1)], 3 ≤ |ω| ≤ 3

0, otherwise

ø ˆφ(ω) £ ˆψ(ω) ªWZ sLž², ÿªJ)ƒ φ(x) ¸ ψ(x) ¥s_ƒbuÌÌ°Qí, φ(x) ú˚k x = 0 , ψ(x) ú˚k x = 12, .¬ÓO |x| íÚÓ, …bíMÿ}Q¡ 0 

Ê‡Þ Battle-Lemari´e Aƒbnƒ p M , Ou Meyer ~š³F‚í p M, ÄÑ ψˆ(k)(0) = 0, FJ R xkψ(x)dx = 0, ∀k = 0, 1, 2, . . ., 6ÿu Meyer ~š£>kFÖá

, ĤÌân p M

2.3 MRA (Multiresolution Analysis)

MRA, C˚ÑÖ½j&˛È}&, Níuø£ä˛Èí {Vj}j∈Z . . . V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2. . .

(19)

/

∀f ∈ Vj ⇔ f (x 2j) ∈ V0

j∈ZVj = L2(R), ∩j∈ZVj = {0}

µó Vj 2ø} Riesz ! ʤ, BbÉn£†! JI φ ∈ V0, † {φ(x − n)} } Ê V0 2$Aø £†!

ì2

φjk =

2jφ(2jx − k)

†ú©_ j ∈ Z, {φjk}k∈Z } A Vj 2íø £†!

z Vj ;dA L2(R) í.° íV¡˛È; †úL<#ìí f ∈ L2(R) I Pj(f ) ∈ Vj u f Ê Vj 2íI , †

Pj(f ) =X

k∈Z

hf, φjkjk

¢ÄÑ φ ∈ V0 ⊂ V1, FJ φ .âÅ—J-$í

φ(x) =X

n∈Z

cnφ(2x − n) (2.3.1)

,H˚ÑA (scaling equation), 7Å—Aíƒb φ ˚ÑAƒb (scaling function), cn ÑA[b (scaling coefficients)

%â {φ(x − k)} í£>4”ZªR) cn .âÅ—J-

X

n

cncn+2k = 2δk0

Í(D¥_ MRA óÉ:í~šƒbÿªJì2A ψ(x) =X

dnφ(2x − n), dn= (−1)nc−n+1 (2.3.2)

(20)

¥³í cn ªJuõbCuµb, Ñ7jZ, IFí cn ·uõb

°šË, Jì2

ψjk(x) =√

2jψ(2jx − k), j, k ∈ Z

† {ψjk} }u L2(R) 2íø £†!

ú©ø_ ìí j, {ψjk} A Wj ˛Èíø £†!, 7~š[b hf, ψjki H[Oƒb f Ê Vj D Vj+1 2I íÏæ, 6ÿu

Vj+1 = Vj⊕ Wj Pj+1(f ) = Pj(f ) +X

k∈Z

hf, ψjkjk

Ê Vj ˛È2, ªJl f íI [bD~š[b hf, ψjki = 1

2

X

n

d2k+nhf, φj+1,ni hf, φjki = 1

2

X

n

c2k+nhf, φj+1,ni

I hl = 1

2cl, gl = (−1) l

2 c−l+1, FJ

hf, ψjki =X

n

g2k+nhf, φj+1,ni

hf, φjki =X

n

h2k+nhf, φj+1,ni

(2.3.3)

,Ht¨ÖL (convolution) í-Z TXàS*œü íI [bVlœ×  I [bD~š[bj¶, u˘k}jít 7*œ× I [b Aœü I [b í¯Atÿu

hf, φj+1,mi =X

k

hf, φjkihφjk, φj+1,mi + hf, ψjkihψjk, φj+1,mi

=X

k

hm+2khf, φjki + gm+2khf, ψjki

(2.3.4)

(21)

Í(ø (2.3.3) Hp (2.3.4), cÜ)ƒ

hf, φj+1,mi =X

n

n X

k

h

hm+2khn+2k+ gm+2kgn+2kio

hf, φj+1,ni

J;bê1í½ÿ.â m = n /

X

k

h

hm+2khn+2k+ gm+2kgn+2ki

= δmn

y‹, gn= (−1)nh−n+1 , FJ,Hª“A

X

l

hlhl+2m = 1 2

X

l

clcl+2m = δm0

Ê [1, (3.40)] )ø, ƒb ψ bAÑø_”~š‚ƒb”.âbÅ—

Z | ˆψ(ω)|2

|ω| dω < ∞

w2 ˆψ u ψ íZ sž²

Hp ω = 0, ‹, R φ(x)dx = 1 ¥_‘K, ÿ)ƒ

ψ(0) =ˆ Z

ψ(x)dx = 0

ªc ψ }uø_òä˙šƒb /

X

n

(−1)ncn= 0

Ĥ

X

n

gn = 0

(22)

ÄÑ (2.3.1), °vúsiªWZ sž², êÛ φ(ω) = mˆ 0

2) ˆφ(ω 2) =

Y

j=1

m0(ω 2j)

m0(ω) u 2π U‚ƒb, Ñ φ(x) íÔƒb m0(ω) = 1 2

X

n

cne−inω

FJê1½í‘KÿªŸA

|m0(ω)|2+ |m0(ω + π)|2 = 1

Hp ω = 0 ÿ})ƒ

m0(π) = 0, |m0(0)|2 = 1

/

φ(0) =ˆ Z

φ(x)dx = 1

ªc φ(x) }uø_Qä˙šƒb

;W‡Þ (2.3.2), y‹, kψk = 1 ¥_‘K, † {ψjk} }uø Ê L2(R) í£†! 1 /ªJ/qí„p

f (x) =X

j,k

hf, ψjkjk

2.4 £>~šƒb

ƒñ‡Ñ¢, Fní£>~šƒb·uUà°ø QäDòä˙š[b hn, gn VªW}j

¸½ *£>~šƒbªJRƒÂ£>~šƒb 6ÿu, Uàs úX! (dual ba- sis) ψjk ¸ ψejk ©ø ·uâÀø_ƒb ψ ¸ eψ í3òF¨A

(23)

£>~š!}ª£>~š!V)µÆ, ÄÑ}s Öµj&˛È

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . .

. . . ⊂ eV−2 ⊂ eV−1 ⊂ eV0 ⊂ eV1 ⊂ eV2 ⊂ . . .

I Wj ˛Èu Vj D Vj+1 ˛ÈíÏæ, Éu Wj 6⊥ Vj  Ê£>!í8”-, }

X

k

|hf, φj+1,ki|2 =X

k

|hf, φjki|2 + |hf, ψjki|2

Ê£>í8$-, ÄÑ Wj 6⊥ Vj , FJÉ}æÊs_õb A, B Å— 0 < A ≤ 1 ≤ B U )

AX

k

|hf, φjki|2+ |hf, ψjki|2 ≤ X

k

|hf, φj+1,ki|2

≤ BX

k

|hf, φjki|2+ |hf, ψjki|2

B¤ªø, c,-äÉ?\„ {ψjk} }uø L2(R) 2í Riesz !, º.?\„Uà¥

!ªJê1í½ !k¥_Üâ, kuùªúX!í–1 óúk Wj , °ší6}

 fWj Ñ Vej D Vej+1 ÈíÏæ, 7/J-p£>y í4”: fWj ⊥ Vj, Wj ⊥ eVj %(B by}õƒ

f =X

j,k

hf, eψjkjk =X

j,k

hf, ψjki ˜ψjk

2.5 ê1½í‘K

ʤBb;b¨| 4 ˙š[b, }u

h = (hn)n∈Z, g = (gn)n∈Z, ˜h = (˜hn)n∈Z, ˜g = (˜gn)n∈Z

(24)

w2ís {h, g} àV}j, ÇÕs {˜h, ˜g} àV¯A l*ø mU c0 = (c0n)n∈Z Çá, z h, g “Vú c0ªWL «, )ƒ}jt

c1n=X

k

h2n−kc0k

d1n=X

k

g2n−kc0k

(2.5.1)

yV}z ˜h, ˜g “Vú c1n, d1n ªWL «Í(ó‹, )ƒ¯At

˜

c0l =X

n

h˜h2n−lc1n+ ˜g2n−ld1ni

(2.5.2)

z (2.5.1) Hp (2.5.2)

˜

c0l =X

k

h X

n

2n−lh2n−k+ ˜g2n−lg2n−ki c0k

7ê1í½ÿu ˜c0l = c0l, ]b°

X

n

h˜h2n−lh2n−k+ ˜g2n−lg2n−k

i

= δlk

I z = e−iω, ªJzmUD˙š[b[Aø_ z ƒb (z-function)

h(z) = X

n

hnzn, c0(z) =X

n

c0nzn, etc, . . .

I

¯

a(z) =X

n

a−nzn=X

n

anz−n

†ú |z| = 1 ¸ an∈ R } a(z) = ¯a(z)

7J,’m, ZªZŸ}jtÑ

c1(z2) = 1 2 h

h(z)c0(z) + h(−z)c0(−z)i

zd1(z2) = 1 2 h

g(z)c0(z) − g(−z)c0(−z) i

(25)

7¯AtÑ

˜

c0(z) = 1 2

h¯˜h(z)h(z) + ¯˜g(z)g(z) i

c0(z) + 1 2

h¯˜h(z)h(−z) − ¯g(z)g(−z)˜ i

c0(−z)

*,Võê1½ÿu

1 2 h

h(z)¯˜h(z) + g(z)¯˜g(z)i

= 1 (2.5.3a)

1 2 h

h(−z)¯˜h(z) − g(−z)¯˜g(z) i

= 0 (2.5.3b)

ÄÑ (2.5.3a) FJBbø− h(−z) ¸ g(−z) 1.}°vÑ 0, 6ÿu…b.}u°É;, C˚Ñ” * (2.5.3b) êÛ, J g(−z) = 0, † h(−z) = 0 C ¯˜h(z) = 0, ‹, g(−z) D h(−z) ”, FJ h(z) = 0 °Ü, ç h(−z) = 0 v, 6})ƒ ¯¯˜ g(z) = 0 6ÿu˜





g(−z) D ¯˜h(z) u°íÉ;

h(−z) D ¯g(z) u°íÉ;˜

FJ

¯˜

h(z) = g(−z)p(z)

¯˜

g(z) = h(−z)q(z)

(2.5.4)

¥³í p, q ·u z ícbŸjÖá

$,, Ê (2.5.4) í ¯g(z) ¥_si° g(−z), )ƒ˜

¯˜

g(z) · g(−z) = h(−z)q(z) · g(−z) ·p(z)

p(z) = q(z)

p(z) ·¯˜h(z)h(−z)

ÄÑ (2.5.3b) FJ q(z) = p(z) 6ÿu

¯˜

h(z) = g(−z)p(z)

¯

(2.5.5)

(26)

yzR)í ¯˜h, ¯g H (2.5.3a), )ƒ˜

p(z) h

h(z)g(−z) + h(−z)g(z) i

= 2

7,í p(z) ñøª?íj¹Ñ

p(z) = αzk FJ

h(z)g(−z) + h(−z)g(z) = 2α−1z−k

α uµb, k ucb yz p(z) Hp (2.5.5) )ƒ

¯˜

h = αzkg(−z), ¯g = αz˜ kh(−z)

ԁVz, I k = 0, α = −1 )ƒ

¯˜

h = (−1)g(−z), ¯g = (−1)h(−z)˜

C6

gn= (−1)n+1˜h−n, ˜gn = (−1)n+1h−n (2.5.6)

Í(Hp (2.5.3a), )ƒ

h(z)h(z) + h(−z)¯˜ h(−z) = 2¯˜

6ÿu

X

n

hn˜hn+2k = δk0

(27)

2.6 ˙š[bt

*_"£>~š!víAƒb φ ÇáVì2 eφ  •à‡Þíì2j

φ(x) =X

n

cnφ(2x − n) =√ 2X

n

hnφ(2x − n)

φ(x) =e X

n

˜

cnφ(2x − n) =e √ 2X

n

˜hlφ(2x − n)e

I m0 ¸

me0 }Ñ φ ¸ eφ íÔƒb m0(ω) = 1

2 X

n

cne−inω = 1

√2 X

n

hne−inω

me0(ω) = 1 2

X

n

˜

cne−inω = 1

√2 X

n

˜hne−inω

ú φ ¸ eφ dZ sž²

φ(ω) = mb 0(ω 2) bφ(ω

2) =

Y

j=1

m0(ω 2j)

be

φ(ω) =me0(ω 2)bφ(e ω

2) =

Y

j=1

me0(ω 2j)

Éb m0(0) = 1 = me0(0) , 6ÿu bφ(0) = 1 = bφ(0) v, †,Hís_ÌÌ ÿ}Y¹e

¥H[ φ ¸ φ øšuQä˙šƒbe

°ší, ªJਣ>~šƒb ψ íj¶V¨|£>í ψ ¸ eψ

ψ(x) =X

n

dnφ(2x − n)

ψ(x) =e X

n

nφ(2x − n)e w2 dn = (−1)l−l+1, ˜dn = (−1)lc−l+1 /I gn= 1

2dn, ˜gn= 1

2

n y‹, (2.5.6) ¥ _‘K

ψ(x) = √ 2X

gnφ(2x − n) =√ 2X

(−1)n+1−nφ(2x − n)

(28)

ψ(x) =e √ 2X

n

˜

gnφ(2x − n) =e √ 2X

n

(−1)n+1h−nφ(2x − n)e

øšú ψ ¸ eψ UsidZ sž²

ψ(ω) = eb 2 me0

2 + π) bφ(ω 2) be

ψ(ω) = e2 m0

2 + π)bφ(e ω 2)

Hp ω = 0, )ƒ me0(π) = 0 = m0(π), 6ÿu bψ(0) = 0 = bψ(0), ¥H[ ee ψ ¸ ψ øšu òä˙šƒb

à°‡ÞFì2í ψjk øš, ªJì2

ψjk =

2jψ(2jx − k)

ψejk =

2jψ(2e jx − k)

;W [4, ìÜ 3.2], ÉbæÊ/_b C ¸  U) bφ ¸ bφ Å—e

|bφ(ω)| ≤ C(1 + ||)12−

|bφ(ω)| ≤ C(1 + ||)e 12−

6ÿu φ, bb φ ∈ Le 2(R), ÿ} ψ, eψ ∈ L2(R), Í(úL< f ∈ L2(R)

f = X

j,k∈Z

hf, eψjkjk = X

j,k∈Z

hf, ψjki eψjk

jk}, { eψjk} Ì} Aø L2(R) 2í Riesz ! 7 { eψjk} u {ψjk} íúX!, , HíµsBb, .BbuUàµø !Vú f d}j, ·ªJyâÇø úX!

ø f ½V

(29)

Q-VbÜyÖÉÔƒb m0 í4” JÔƒb m0 Å—

m0(ω) = e−iλω|m0(ω)|, ∀λ ∈ R

ÿ˚ m0 x(4óPÏ (linear phase) âk m0 u 2π U‚ƒb, FJ}FU λ ∈ Z, Ô

Vz, ªJI λ = 0 ‹,Éb cn uõb, ÿ}U),ŸA

m0(−ω) = m0(ω)

¥šíú˚G, ú˚2-Ñ 0 (ú˚k c0) FJ¢˚ÑXú˚

,Þú m0 ín˛%§Î7 Haar ƒbí8”, ¥uÄÑ Haar íAƒb φ uú˚k 12 7.u 0 6ÿu

φHaar(1 − x) = φHaar(x)

ú˚k 1

2 íAƒb φ Fú@íÔƒb m0 .Å—,HXú˚í, 7Å—

e−iω2 m0(−ω

2 ) = e2 m0(ω 2)

em0(ω) u 2π U‚ƒb, /ú˚k c1, C˚ÑJú˚

ʤcqF\níAƒb φ, eφ wÔƒb m0, me0 .uXú˚ÿuJú˚; àå

íimVõ, 6ÿuåú˚k c0 .Íÿuú˚k c1

²ìAƒb φ,  m0 (, Bb´Ûb²ìø_me0 VU)-HA

m0(ω)me0(ω) + m0(ω + π)me0(ω + π) = 1 (2.6.1)

me0 ¸ m0 øšxó°íXú˚CJú˚í4”

ÇøjÞ, m0, me0 @b?\ (1 + e−iω)L(1 + e−iω)L˜ FcÎ, L, ˜L ≥ 1 Jb°L, ˜L ?

(30)

;W [4, 4” 6.2] )ø, J m0,me0 uXú˚, † m0,me0 ÿª[A

m0(ω) = cosω

2

2l

p0(cos ω)

me0(ω) = cosω

2

l

ep0(cos ω)

JÑJú˚, †ªJŸA

m0(ω) = e−iω2  cosω

2

2l+1

p0(cos ω)

me0(ω) = e−iω2  cosω

2

l+1

pe0(cos ω) w2 p0 uøÖá, p0(−1) 6= 0, l, ˜l ∈ N

.uXú˚CuJú˚, Hp (2.6.1) ·})ƒ-

 cosω

2

2k

p0(cos ω)ep0(cos ω) + sinω

2

2k

p0(− cos ω)ep0(− cos ω) = 1

ÊXú˚v k = l + ˜l; ÊJú˚v k = l + ˜l + 1 Jà 1−cos ω2 = sin2 ω2 Hp,, )ƒ

 cosω

2

2k

P (sin2 ω 2) +

 sinω

2

2k

P (cos2 ω 2) = 1 C6u

(1 − x)kP (x) + xkP (1 − x) = 1, x = sin2ω

2 (2.6.2)

;W [4, ìÜ 6.3] J p1, p2 ÑŸb}u n1, n2 íÖá, / p1, p2 ³u°íÉ; (

”); †}æÊñøí, |òŸb}Ñ n2− 1, n1− 1 íÖá q1, q2 U)

p1(x)q1(x) + p2(x)q2(x) = 1 (2.6.3)

A  @à¥_ìÜ, I p1(u) = (1 − u)k, p2(u) = uk, ÄÑ p1(1 − u) = p2(u), à 1 − u VH u Hp (2.6.3) )ƒ

p2(u)q1(1 − u) + p1(u)q2(1 − u) = 1

(31)

I qe1(u) = q2(1 − u), qe2(u) = q1(1 − u) ;W q1, q2 íñø4, )ƒ q2(u) = q1(1 − u) U) P (u) ≡ q1(u) íü}u (2.6.3) íø_j ʤ8”-, ½Ÿ (2.6.2)

P (u) = (1 − u)−k − uk(1 − u)−kP (1 − u)

ÊU¬Giú P (u) dœ Ç, ˛ø P íŸbu k − 1, FJÉbLJÞí k áÿß, )ƒ

P (u) =

k−1

X

n=0

 k + n − 1 n

 un

°v, P (u) 6uŸb|üíj

FJ

P (sin2 ω

2) = p0(cos ω)pe0(cos ω) =

k−1

X

n=0

 k − 1 + n n



(sin2 ω 2)n

P (cos2 ω

2) = p0(− cos ω)pe0(− cos ω) =

k−1

X

n=0

 k − 1 + n n



(cos2 ω 2)n

J-BbÜ CDF [4]5Ôy£>~šƒbí¨¶ I φN Ѽb N íš‘ƒb (c 2.1

), * [4, p540] )øú@íÔƒb mN0 6ªJŸA mN0 (ω) = (1+e2−iω)N eiωbN2c

= e−iσω2(cosω2)N

=

N −bN2c

X

n=−bN2c

2−N

 N

n + bN2c

 e−inω

= 1 2

X

n

cne−inω

/

m2L0 (−ω) = m2L0 (ω), m2L+10 (−ω

2) = em2L+10 (ω 2)

(32)

I l = L, p0 ≡ 1 †Å— (2.6.1) í me0 ÿ}u

meN, ˜0 N = e−iσω2(cos ω

2)N˜hXk−1

n=0

 k − 1 + n n

 (sinω

2)2ni

= 1 2

X

n

˜ cne−inω

N ≥ 1, N + ee N = 2k ÑXb, 7

σ =





0, if eN ÑXb 1, if eN ÑJb

Êüıøà N = 6, eN = 8 í˙š[b, dbW}&

(33)

úı ÞÓõðDmU¦)

rÖ-¦Sè¸A3ÿ%Í$º477óÉ, JbòQW¿qDA3ÿ%º4, .â%¬a ï4œ×íGX, úA7k, ÿÜ »W…< FJú@æ»ç7k, ê|aï4ü/?

õ¥@A3ÿ%º4íj¶ÿé)½b Ñ7\Mdıíêc4, ÔËø [2] ³FTƒ5Ó õðj¶Y“ʤ, JX¡5

3.1 AÑŒé¶}

ýÁ Wistar 43 (½¾ 380 B 450 s) â:5·¦ pentobarbital (50 mg/kg), ,}(, d

$ Ó0žJZ¿¾09¸“ÓíÓ0·¦ d−ž1Q,A ãÜÂ, øã−í ù“ïÖ¾−„Ê 3.5% B 4.0% 5È %âìÅÚ&MÓíÅk 38 ± 1C

QO, ~Ç43:5, A˝‡,jí!ì -2}×|‡>>ÿ%, J¼äø‡>>ÿ%5±

-«H4ú;, z¡-«0k.é•Â”Ú”,, kò¦>kÚ”¸ÿ%¶ˇàJ ìÿ%¸

Ú”1Ž¤"í£Ê¢ÿ%, ÿ%íÚP‰“mU%¬øä Ñ 30 ∼ 3K Hz 5¦˙

šÂªW˙š, y[×øNI(JÖ¦−~p“Âp“k~2 °v, ¦9mU%0ž

fBž? (ä0¸ˇ:DC ∼ 75Hz ) ž²ÑÚPmU, ‚àéª[×Â, D>>ÿ%5Ú mU°¥p“k~2 &õð!!(, Ó0·¦ÿ%®i™ hexamethonium bromide (20 mg/kg) J Î>>ÿ%º4, p“Ìÿ%ÚmUvÍ$í*ÆmM

43å¶J ñìPi ì, J(Fm‘øçN|ckÈ(J-…T A'˝×}´Ç '˝ Ð|7á*¶, ú”À˘Ú”J 20 éižp7¶, «¿ obex ‡(® 2.0 … 2 (˝¬® 2.0 … *¶[Þ¿ 0.5-2.5 mm 2í>>EU– ÊJÚŒéíjvƒ

>>EU–(, kÇá ÚŒé5‡, lÓ0·¦ÿ%-w X¸í®i™ gallamine (50 mg/kg), β1-adrenoceptor í®i™ atenolol (1 mg/kg) £ angiotensin II converting

(34)

enzyme í{„™ captopril (10 mg/kg) ¤(©½Bü} Z^k·¦®“ÓJ,H

™¾íû}5ø QOJ ÚŒé (Anapulse stimulator model 302-T, WPI Inc., New Haven, CT) ªW.°‘Kíjš0§Œé Œé‘Kí¡bà-: 0§vÑ 500 ms, 0§#Ñ 10-50 mA, 0§ä0Ñ 50 Hz, c 0§ívÑ 500 ms 7s 0§È ívÑ 0.6 B 50 ”, ø_ ŒéívÈÑ 80-90 ” s_ 5ÈíȽv†eÓ í¦9£>>ÿ%º4Sv+ ì7ì k…õð2, ©øÁ43תêA 20 _ í Œé

õð!!(, ¦64”p“k~qí©_ ŒéF)5¦9£>>ÿ%5éªmU, ‚àé ª/bPž²Â BIOPAC (System, Inc., Goleta, CA) J 6 kHz ¦šä0ž²ÑbPm U >>ÿ%íbPmUÇy‚à½0vÈqÑ 20 …”íbP }ÂT‡TÜ

3.2 ÌAÑŒé¶}

ýÁ Wistar 43 (350 B 450 s) J pentobarbital (50 mg/kg) ,}(, àø¶MFH êA$ Ó0ž£q‡>>ÿ%íp“Ú” ÇÕJø.²•Â”Ú”â:5.p1%

‡JRd.íw , JZp“ãܬ˙2d.w íwÚP‰“ GXêH(, Ó&Ó)+

Bú4w(2¦?ßÞò<¥¦vZâÓ0žlJ pentobarbital (12.5 mg/kg) Tü™

¾,}, p“ÓÊ`~¬˙2, ¦9£>>ÿ%ímU çÓ¢)+ƒ?ßÞò<¥¦(

ÿT¢p“1úÓªW>9¥¦ ÎGX GXêA(, à,5p“˙åy½µøŸ p“

F)5¦9£ÿ%mU©½ø} ¦ 64 ”ívÈÅ, ÄÑ©¨p“í,vÑùüB úü} , FJ©¨p“ª)ƒ 13 ’e

ÇÕýÁ Wistar 43 (½¾ 350 B 450 s) k$ Ó0ž£qd.wÚP¸‡>>ÿ

%º45p“Ú”GXêA(, &Ó)+Bú4w(2¦?ßÞò<¥¦v, âÓ0žl J pentobarbital (40 mg/kg) Tœ×™¾,}, p“ÓÊ`~¬˙2¦9£>>ÿ%í

(35)

mU çÓ¢)+ò<¥¦(, T¢p“ p“F)5¦9£ÿ%mU©½ü} ¦ 64 ”í vÈÅ ÄÑ©¨p“í,vÑþB } , FJ©¨p“ª}A 15 í’e

Ê [2] ¥¹d³N|, ¦9ä$2 0.02 ƒ 1.7 Hz íä0¸ˇq, >>ÿ%x|wŠ 0×üí?‰ úkÔìä0í>>ÿ%º4‰}¨A°ä0í¦9‰ 7/ÓOŒéä 0íÓ‹, >>ÿ%º4ú¨A¦9‰¾}ANb-±

(36)

ûı ä$}&DvÈå

ÊbPmUTÜ,, 'Ö$lj¶\àV,¿.°bPmUÈíóÉ4íì¾j¶ Ê

¥³, Bbbú¥<\àV,¿ä$íóÉ$lj¶, dªø¥íªWj„Dn

4.1 Cross-Correlation

I x(n), y(n) Ñs Ì&íbPmU , †…b˛¤Èí cross-correlation ÿuløw 2ø bPmU x(n) ì, Çø bPmU y(n) y%â‚àvÈôb (time delay) VD x(n) ªWq (y°w‚M, 6ÿu

rxy(m) = E{x(n)y(n + m)}

FJ

rxx(m) = E{x(n)x(n + m)}

ryy(m) = E{y(n)y(n + m)}

6âkvÈôb¥_ÄÖ, U)mUTÜ,í cross-correlation }.°k$l, íÀøbM

$, 7ZJø åí$æÊ ԁVz, †Bb˚ rxx ¸ ryy Ñ autocorrelation

4.2 Cross-Covariance

ÇøéN cross-correlation í$l¾ÿu cross-covariance løs mU, lÁ _

킁M(, yd cross-correlation «, 6ÿu

cxy(m) = E{[x(n) − µx][y(n + m) − µy]}

(37)

µx Ñ x(n) 킁M, µy Ñ y(n) 킁M, ÄÑ‚MÊ«vx(4É[FJ,H cxy

¢ªJŸAJ-$

cxy(m) = rxy(m) − µxµy

4.3 CSD D PSD

7 cross-correlation í–1(, ÿªJªø¥«nä$}&íj¶ s mU x(n), y(n) í Cross Spectral Density (CSD), ÿu‚à x(n), y(n) í cross-correlation V½hì 2ø_híúiÖá

Pxy(ω) =X

m

rxy(m)e−iωm

7

Pxx(ω) =X

m

rxx(m)e−iωm Pyy(ω) =X

m

ryy(m)e−iωm

}u x(n) D y(n) í Power Spectral Density (PSD)

I

X(ω) =X

n

x(n)e−iωn Y (ω) =X

n

y(n)e−iωn

}Ñ x(n) D y(n) íúiÖá, y‹, rxy ¥‘ä, ÿªJ½hZŸ,Hí CSD t

(38)

Pxy(ω) = X

m

rxy(m)e−iωm

= X

m

X

n

x(n)y(n + m)e−iωm

= X

m

X

n

x(n)y(m)e−iωmeiωn

=  X

n

x(n)eiωn X

m

y(m)e−iωm

= X(ω) · Y (ω)

°Ü

Pxx(ω) = X(ω) · X(ω) Pyy(ω) = Y (ω) · Y (ω)

4.4 Phase ƒbDž²ƒb (Transfer Function)

ílì2ž²ƒbt

Pxy(ω) = H(ω)Pxx D Phase ƒbt

Φ(ω) = tan−1

nIm[Pxy(ω)]

Re[Pxy(ω)]

o

J-Bb%âøÔy8”Vzp Phase Dž²ƒb

I x(t), y(t) s mUÈíÉ[ÉÀÓívÈÏ τ , 6ÿu

x(t + τ ) = y(t)

,Þ¥‘äuJ y(t) dÑ™íVõí: J τ > 0 [ýÊv, x(t) äl y(t), J τ < 0 H[ x(t) r( y(t), τ = 0 †u x(t) = y(t) ¥älDr(íÉ[¦²kJ x(t) C y(t) dÑ™íVõí!‹

(39)

ú,H y(t) ªWZ sž², )ƒ

Y (ω) = Z

y(t)e−iωtdt

= Z

x(t + τ )e−iωtdt

= eiωτ Z

x(t)e−iωtdt

= eiωτX(ω)

ø,ÞFRû|Víäp CSD t, )ƒ

Pxy(ω) = X(ω) · eiωτX(ω) = eiωτPxx(ω)

Dž²ƒbTªœÿ}êÛ

H(ω) = eiωτ

6ÿu x(t) D y(t) ÊÉvÈÏí8”-, wž²ƒbcuÄÑvÈÏF¨AíóPÏ eiωτ 7˛

ÄÑ Pxx …™uø_õƒb, Pà Euler t, ÿ})ƒ

Pxy(ω) = Pxx(ω) cos(ωτ ) + iPxx(ω) sin(ωτ )

I

Re[Pxy(ω)] = Pxx(ω) cos(ωτ ) Im[Pxy(ω)] = Pxx(ω) sin(ωτ ) }Ñ Pxy íõ¶D™¶ FJ

Im[Pxy(ω)]

Re[Pxy(ω)] = tan(ωτ ) I

Φ(ω) = tan−1nIm[Pxy(ω)]

Re[Pxy(ω)]

o

= ωτ

(40)

Φ(ω) ÿuÊøOd³cí ”phase” Ĥ‡ú.°íä0õ ω ÿªJv| x(t), y(t) óúívÈÏ, 6ÿu

τ = Φ(ω) ω b·<íu, ,b<2.â ω 6= 0 nW

FJ, úø_ ìíä0õ ω 7k, à‹vÈÏ τ = 0 † x(t) = y(t), X(ω) = Y (ω), Pxy(ω) = Pxx(ω), H(ω) = 1 7/ Φ(ω) = 0

4.5 Coherence

Coherence \àV,¿s mUÊä$íóN

Cxy(ω) = |Pxy(ω)|2

Pxx(ω)Pyy(ω) = Pxy(ω)Pxy(ω) Pxx(ω)Pyy(ω)

wM}k [0, 1] , MQ¡ 1, H[s mUÊä$íóN× Jø‡Hí Pxx, Pxy, Pyy òQp, †

Cxy(ω) = X(ω) · Y (ω) · X(ω) · Y (ω) X(ω) · X(ω) · Y (ω) · Y (ω)

= X(ω) · Y (ω) · X(ω) · Y (ω) X(ω) · X(ω) · Y (ω) · Y (ω)

= 1

})ƒÌÑ 1 íbƒb, 1Ì¡?‰, 6.?TX’m ÑU)Flí coherence M

¡?‰, J-zpsZªíj¶

(41)

4.6 Bartlett D Welch j¶

‡Hl coherence j¶, uòQ* Pxx, Pxy, Pyy )V ;d& N í x(n) u}0Êc_

v,, Í(‚àø_&D x(n) ó°í ”¢” z x(n) *c_v,¦-V ¥óòQ/

ÄÉí ”¢”, ÿ}U) Pxx, Pxy, Pyy '×í variance, ¥ší!‹, ÿuBbz x(n)

&Ó‹6ÌÈk9

ѱQ Pxx í variance, ø& N í x(n) HàA m ¨&ÌÑ Nm /.½Lí}Òm U }ú©ÒmUªW Pxx «, )ƒ}ÒmU®Aí Pxx1 , Pxx2 , . . . , Pxxm Í(¦ Pxx = (Pxx1 + Pxx2 + . . . + Pxxm)/m V¦HŸlì2í Pxx à¤, ÿ?±Q Pxx í variance 7 /ŸmU x(n) F?~’í}ÒmUbñÖ, w Pxx 5 variance M±Q^‹ÿpé ç m Q¡ N v, Pxx íM¡k 0 °ší, 6ªJUàó°íj¶Vl Pxy ¸ Pyy

¥ømU}’Ñ.½Lí}ÒmUj¶, ÿ˚Ñ Bartlett j¶

Bartlett j¶˛%ªJ^±Q Pxx, Pxy ¸ Pyy í variance, OEÿÜ Ì&ím U, F?}’í}ÒmU,buÌí, |Öÿ N ¨, ©¨}ÒmUÿɨÖø_bM, ¥ š ͪJ®ƒ|Öí}ÒmU, º6ÄÑ©¨}ÒmU¬s7„?¨Ö—D’m

Ñj² Bartlett j¶íÿÜ, Ê 1976  Welch TX7ø_Z¾íj¶ 3bíZªÿu, o r}ÒmUªJóí½L Žâ½LíÓ‹, ÿªJ)ƒ—DÖí}ÒmU, 7/©¨}

ÒmU·?DÖ—Dí’m à¤, ÿ?y^±Ql Pxx, Pxy, Pyy vF¨A variance

MATLAB í Signal Processing Toolbox ³, TXø_Uà Welch j¶í cohere( ) ƒ

Vls mUí coherence, Êú Welch j¶š7jJ(, ÿ?Uà cohere( ) ¥_

ƒVl

J-u MATLAB 5 cohere( ) ƒ펵:

(42)

[coh, f]=cohere(x, y, nFFT, Fs, window, noverlap)

w2 x, y us ÄeàVl˛¤ coherence ímU, nFFT Ñ}ÒmUí&, Fs u¦

šä0 window †u6}ÒmU‹ ”¢”, Wà: hamming, hanning  ”¢” í&.

âD nFFT íMó° ‹7 ”¢” í}ÒmUʪW FFT vÿªJÁý leakage íßÞ

|(, noverlap Ñ}ÒmUÈ˛¤í½L ç noverlap=0 v, ÿóçkUà Barlett j

¶

J-BbøJøPõðV‡ nFFT ¸ noverlap ¥s_¡b BbàVdõðímUÑ allcos ¸ allsin, ì2à-: ÀPvÈqËÓä0Ñ k í cos D sin ƒb, }J 20 ÑȽ ªWÚ‹)ƒs_hƒb

fcos(x) = X

k

cos(2πkx) k = 0, 20, 40 . . . , kmax

fsin(x) =X

k

sin(2πkx) k = 0, 20, 40 . . . , kmax

kmax Ñ|×ËÓä0, / fcos(x), fsin(x) x π2 íóPÏ ÊvÈ x ∈ [0, t] í¸ˇq, ú fcos(x) D fsin(x) J fs í¦šä0ªW¦š)ƒbPmU allcos D allsin Ĥ allcos D allsin &ÌÑ N(=fs× t)

I

nFFT = N ∗ (m/10), m = 1, 2, ..., 10 noverlap = floor(nFFT ∗ op), op = 0, 0.1, ..., 0.9

Í(‡ú.°í}ÒmU& (nFFT) D½Lì}ª op (overlap percentage) V}H p cohere( ) l allcos D allsin í coherence M, 1$lwM×k 0.5 F25ì}ª - [uJ kmax = 100, fs = 1024, t = 10 ªWlíWä, w2 - H[.x¡?‰íÕ”, ].8$l

(43)

op 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m1 66 33 33 44 33 68 33 34 33 33

2 66 31 38 44 54 69 31 31 31 31

3 71 59 53 42 37 74 59 38 31 33

4 78 53 69 42 55 73 46 63 30 31

5 70 73 76 80 85 75 80 79 78 80

6 - - - - 56 82 65 48 71 34

7 - - - 56 63 69 86

8 - - - 68 59

9 - - - 80

10 - - - -

%â,[ªJõ|, Î7µ<ÄÑ nFFT &¬ÅF¨A allcos D allsin mU˛¤Ì¶}

< (coherence ·u 1, J - [ý) .8$lí8”Õ, Ê m=5 v, Ìœ×íM ÖÍ op=90%, m=6 v 85.91 íM, OuUà&œÅí}ÒmU&Dœòí½Lì}ª, }ªwF ¯ÖyÖí}ÒmU, ¨Ay×íl¾, FJ op=40%, m=5 }uªœß í²Ï, 6ÿu nFFT=N2 / noverlap=N5

¤Õ, } à,[bM´ kmax ¥_ÄÖ kmax qìí×, cñbMÿ}O-±, ÄÑ œ íä0¸ˇ, ÿóú}yÖ coherence ük 0.5 íä0A} Ou¹UbM-±, óú

|×MßÞT´u.‰ J¤ZªTÑl coherence v, ²Ï¡bvíø_YW

J,Fní nFFT D noverlap s¡b, ø}Êüıl¦9D>>ÿ%º4mU˛¤

Èí coherence vUà

(44)

üı bW}&

5.1 }&j¶

Ê [2] d³Tƒ, Fbíä$}&j¶uløp“¦9¸>>ÿ%º4íbPmU}¨d×

àZ sž², ¦Ì, yªWä$}& ¥.%^òímU%%¨ÖrÖÆm, 7 àƒ ä$}&í¹”¸Äü4 ʤBbùª Wavelet í;¶, ı‚à Wavelet …™x_@

4í ”¢” íÔ4, V6ŒBbªWmUÊ×àZ sž²‡í‡0TÜ, J‚±Ql¾1 .Ü˙š^‹ ÊõT,, ‚à MATLAB VªWlD˙Çê J-Êä$}&,, 6}

ø·<‰rÕ2Ê 0.02 ƒ 1.7 Hz íä0¸ˇqVªWhô

øæ¦9 (BP) ¸>>ÿ%º4 (SNA) DmU“vÈí’e-p, }ªW~š}j, ømU}jA.°µíQäDòä Ê 0.02 ƒ 1.7 Hz ¸ˇq, >>ÿ%º4Œéä0}

ú¦9ßÞ°äËÓ ¤°äËÓ, æÊk¦9D>>ÿ%º4í®µQämU³

MATLAB í Wavelet Toolbox TXD~šƒbóÉíƒ Wà: dwt( ) D wavedec( ) }TXøµ~š}jDÖµ~š}jŠ? Éuú£>Íí~šƒb7k, Uà Wavelet Toolbox FTX탥7}mU%¬}j(, QäDòä}j[b&.£üí¥^‹

J j = 10 & 1024 ÑW:

n An Dn N/2n diff 1 520 520 512 8 2 268 268 256 12 3 142 142 128 14 4 79 79 64 15 5 46 48 32 16 6 32 32 16 16 7 24 24 8 16 8 20 20 4 16 9 18 18 2 16 10 17 17 1 16

(45)

¤Ïæ4, ¢}ú}j(íQä[bÊZ sž²v¨Aä$Rí.£ü!‹ ku, ŸJ Wavelet Toolbox FVíZ‚4, ½hªŸ~š}jí˙V^£mU}j(íQòäm U&.£üí½æ

5.2 ˙š[b¦)

‡ú Biothogonal 6.8 (bior6.8), …Ûbs Qò˙š[b, w2ø àVªW}j, Çø àVªW¯A, 6ÿuÛbû .°í˙š[b, Qä}j (Ld), Qä¯A (Lr), òä}j (Hd) Dòä¯A (Hr) û [b Uà Wavelet Toolbox ³í wfilters( ) ÿªJ¦)¥û Qòä˙š[b, 9lJ .mat í$æ[, Ê.bv-p

5.3 ~š}jƒ

mydwt( ) uªW~š}jíƒ, 3bíÆj¶VA [1, Ch4] Žµà-:

[A, D, L, tout]=mydwt(sig, step, tin)

w2 sig ukªW~š}jímU, step ubªW}jí ”Ÿb”, tin †umUFp“ív È mydwt( ) ƒÉTÜ 2 ícbŸj&ímU, JpmU.¯, †S¦i mUíj

VTÜ 1øú@ívÈõf# tout ÉbmU…™Fp“ívÈDÅ, i mUíT 1Ì.]

âk Vj = Vj−1L Wj−1, Ê£>~šƒb˛È1.A , kuUà An(Approximation)

¸ Dn (Detail) }[ýmUÊ n µ~š}jíQäDòä[b, 6ÿu

L D

(46)

Í(ø©Ÿ}jíQäDòämU}YÕ¯9ƒ A £ D ³Þ â L p“®µ~š}jí QòämUí& °v, L …™í&6H[7¤mUF}jíŸb

adcoefget( ) ª* A D D ³¦|®µ}jíQäDòä[b Žµà-:

w=adcoefget(x, L, level)

w2 x ªJu A C D, L uæ[®µQäDòä&í²¾, level †uNìk¦|¨øµ QäCòämU, Í(f# w

¦9C>>ÿ%º4mUÊ%â mydwt( ) ªW}j(, ªJzFíQä[bDòä[b

½hõAs_.°éímU, N¬Z sž²ªWä$}&, ¥¶}Uà fftspec( ) VêA

[spec, freq]=fftspec(sig, time)

fftspec( ) ÛbpkªWZ sž²ímU (sig) £wFp“ívÈ (time), Í(fmU íä$ (spec) Dwú@íä0W (freq)

5.4 !‹Dn

J [2] qTXF‚ sti3 í BP ¸ SNA mUÑW (Figure 7), Œéä0 0.63 Hz í SNA ú BP F¨Aí°äPÓ%¬ FFT (Àʪc (Figure 1) OuFl|Víä$Dw coherence 1.Ü; (Figure 3) ŸÄÊkòQªW FFT í BP ¸ SNA mU…™Öí Æm, 7¥<ÆmZ‹27}&!‹ kuÊú BP ¸ SNA ªW FFT ‡, lømUªW~

š}j, ©%¬øŸ~š}j, í¶}ÿ}Ožƒòä, ÿóçuú©øµQämU ªW˙š

(47)

%¬~š}j(, BP ¸ SNA ÿªJ}„jAs .°ÍíQä[b (An) Dòä[b (Dn) ªJêÛ, ׶}íòä[b·uÆm¸¶Mä0íž 7khôí 0.02 ƒ 1.7 ä 0¸ˇÿæÊk®µíQä[b³Þ ÎÝ%¬ÝÖµí~š}jnœ}zBbbhôí ä0žƒòä Í7¬Öí~š}j, F)ƒíQäDòäí&¬s, JyúwªW FFT 6̶y×)Bó’m

ú®µQä[b}ªW FFT, phase ¸ coherence íl, ¦|øµQäí}&!‹1 DòQªW FFT í!‹ªœÿ}êÛ, °äPÓy‹Àʪc (Figure 2), c_ä$6ÄÑ

~š}j^‹7‰)ªœ´, 6œßí coherence (Figure 4) J./ú%-µíQ äTl, Ê. àhôíä0¸ˇq, ÖÍ˙ší^‹M/Ouw!‹·¸øµí!‹Ï æ1.× (Figure 5, Figure 6), ¥H[׶}íÆmÊøµ~š}jÿ˛%˙Î

©øµíQämU&·uw,øµíQämU&íøš, v,Fú@í Ó‹øI, ú@í¦šä0Áš, ª¿ä OÁš Jz©µQä[bí FFT Fú@í|×ä0¦|

Võ, ÿ}õƒ|ת¿ä í‰“, ©%¬øµ}j, F)ª¿ä ÿúÁš cì F Ñm Uª¿ä , † n µ}jíQä (An) ª¿ä ÿu F/2n ‹, F uÌí, FJ.ª?

}Ì¢`í}-  I [fmin, fmax] Ñkhôíä0¸ˇ, † fmax ≤ F/2n

6ÿu

n ≤ log2(F/fmax)

Êkhôíä0¸ˇq, |ÖÉbd n µí~š}jÿªJ7 Wচä0 6144 , ª¿ä  Ñ 3022 , cìbhôíä0¸ˇÊ [0,2] †

n ≤ log2(3022/2) = 10.5613 6ÿuÉbd 10 µªJ

Î7 0.63 Hz í°äËÓä0Õ, ¦9mUä$Ê 0.05 Hz íä0_.üíPÙ ÑõÀ

(48)

sti3 í¦9mU%¬ 13 µ~š}j(ªJõƒÊ 10 µJ‡·uòò,,í¯Aš, Ou ƒ7 10 µJ(ÿ7p鉓 (Figure 8) Î7¦9…™í pulse Õ, yõƒ7Ê 10 µJ‡·õ.ƒíø_Ûï — ø_Qäíš *¥_Qäší°Q¸ˇV²|ú@ä 0, ÿ}êۏßD¦9ä$2 0.05 Hz íä0ó¯ ƒ7 13 µ, BbFbhôí 0.63 Hz í°äËÓä06˛%žƒòä, FJ¥_Qäš6ÿêréÛ|V7

Z sž²ªJ)ømUx¨<.°ä0íA}, OuºÌ¶)øÖ¥<ä0ímUÊv

,íÅó 7~šž²ªJømU„jAÊv,Ö.°AMíQäDòämU, Ouº

³Ÿ¶püíN|mUFÖíä0 FJø~šž²»ºZ sž²ÿªJuèmUÊv

Dä0í[

(49)

Figure 1: òQªW FFT í BP D SNA ä$

Figure 2: øµ~š}jí BP D SNA Qää$

(50)

Figure 3: BP, SNA òQUà FFT í Phase, Coherence

Figure 4: BP, SNA øµ~š}jQäí Phase, Coherence

(51)

Figure 5: µ~š}jí BP D SNA Qää$

Figure 6: BP, SNA µ~š}jQäí Phase, Coherence

(52)

Figure 7: BP D SNA mU

Figure 8: %¬µ~š}jí BP D SNA QämU

參考文獻

相關文件

3: Calculated ratio of dynamic structure factor S(k, ω) to static structure factor S(k) for &#34;-Ge at T = 1250K for several values of k, plotted as a function of ω, calculated

S15 Expectation value of the total spin-squared operator h ˆ S 2 i for the ground state of cationic n-PP as a function of the chain length, calculated using KS-DFT with various

We present a new method, called ACC (i.e. Association based Classification using Chi-square independence test), to solve the problems of classification.. ACC finds frequent and

files Controller Controller Parser Parser.

The continuity of learning that is produced by the second type of transfer, transfer of principles, is dependent upon mastery of the structure of the subject matter …in order for a

(1996), “A Theory of Organizational Knowledge Creation,” International Journal of Technology Management, Vol. Grayson (1998), If only we knew what we know: The transfer of

format, Signal acquisition, Wavelet packet analysis , Discrete wavelet transform, Hyperkalemia, Acute myocardial infarction, P wave, QRS complex, T wave, Neural network,

Umezaki,B., Tamaki and Takahashi,S., &#34;Automatic Stress Analysis of Photoelastic Experiment by Use of Image Processing&#34;, Experimental Techniques, Vol.30 , P22-27,