Chapter 8 Conics, Parametric Equations, and Polar Coordinates (圓錐曲線、參數方程式與極坐標)

59  Download (0)

Full text

(1)

Chapter 8

Conics, Parametric Equations, and Polar Coordinates

(圓錐曲線、參數方程式與極坐標)

Hung-Yuan Fan (范洪源)

Department of Mathematics, National Taiwan Normal University, Taiwan

Spring 2019

(2)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

本章預定授課範圍

8.1 Plane Curves and Parametric Equations 8.2 Parametric Equations and Calculus 8.3 Polar Coordinates and Polar Graphs 8.4 Area and Arc Length in Polar Coordinates

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 2/54

(3)

Section 8.1

Plane Curves and Parametric Equations

(平面曲線與參數方程式)

(4)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Def. (參數曲線的定義)

Let I be an interval. A plane curve C is often defined by the graph of the parametric equations (參數方程式)

x = f(t) and y = g(t) ∀ t ∈ I,

where f and g are conti. functions of t, and t is a parameter (參數).

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 4/54

(5)
(6)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 6/54

(7)
(8)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 8/54

(9)

Section 8.2

Parametric Equations and Calculus

(參數方程式及其微積分)

(10)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Thm 8.1 (參數曲線的微分) If C is a smooth curve defined by

x = f(t) and y = g(t) ∀ t ∈ I, with dx/dt = f (t) ̸= 0 ∀ t ∈ I , then

(1) the slope of C at the point (x, y) is given by dy

dx = dy/dt

dx/dt = g (t)

f (t) ≡ m(t) ∀ t ∈ I.

(2) the second derivative is given by d 2 y

dx 2 = d dx

(dy dx )

= d(dy/dx)/dt

dx/dt = m (t)

f (t) ∀ t ∈ I.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 10/54

(11)
(12)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 12/54

(13)

Example 2 的示意圖

(14)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 14/54

(15)
(16)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Example 3 的示意圖

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 16/54

(17)
(18)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 18/54

(19)

Thm 8.2 (Arc Length in Parametric Form) Let C be a smooth curve defined by

x = f(t) and y = g(t) ∀ t ∈ I = [a, b].

If C does not intersect itself on I , then the arc length of C on I is given by

s =

b

a

1 + (dy dx

) 2

dx =

b

a

1 + [y (t) x (t)

] 2 [ x (t)dt

]

=

b a

[x (t)] 2 + [y (t)] 2 dt =

b a

[f (t)] 2 + [g (t)] 2 dt.

(20)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 20/54

(21)

Example 4 的示意圖

(22)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 22/54

(23)

Useful Formulas

Recall the following identities for the sine and cosine functions:

1

cos(α β) = cos α cos β+ sin α sin β

2

cos(α+β) = cos α cos β sin α sin β

3

sin(α β) = sin α cos β cos α sin β

4

sin(α+β) = sin α cos β+ cos α sin β

(24)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Section 8.3

Polar Coordinates and Polar Graphs (極坐標與極坐標圖形)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 24/54

(25)

Def. (極坐標的定義)

The polar coordinates (r, θ) of a point P(x, y) ∈ R 2 is defined by r =directed distance from the ple (極點) O to P.

θ =directed angle, conterclockwise from the polar axis (極軸)

to the line OP.

(26)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

極坐標的示意圖 (承上頁)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 26/54

(27)

Notes

(1) The polar coordinates of the pole is O = (0, θ) for any θ ∈ R.

(2) The polar coordinates (r, θ) and (r, θ + 2nπ) represent the same point in R 2 , i.e., (r, θ) = (r, θ + 2nπ) ∀ n ∈ Z .

(3) If r > 0, then ( −r, θ) = (r, θ + (2n + 1)π) ∀ n ∈ Z .

(28)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

示意圖 (承上頁)

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 28/54

(29)
(30)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

直角坐標和極坐標的關係

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 30/54

(31)
(32)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 32/54

(33)
(34)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 34/54

(35)

三瓣玫瑰線的動態示意圖

(36)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

三瓣玫瑰線的動態示意圖

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 35/54

(37)

三瓣玫瑰線的動態示意圖

(38)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

三瓣玫瑰線的動態示意圖

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 35/54

(39)

三瓣玫瑰線的動態示意圖

(40)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

三瓣玫瑰線的動態示意圖

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 35/54

(41)

Slope and Tangent Lines

Thm 8.5 (Slope in Polar Form)

If f is a diff. function of θ, then the slope of the tangent line to the graph of r = f(θ) at the point (r, θ) is

dy

dx = dy/dθ

dx/dθ = f(θ) cos θ + f (θ) sin θ

−f(θ) sin θ + f (θ) cos θ .

(42)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 37/54

(43)
(44)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 39/54

(45)
(46)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

函數 r = sin θ 的示意圖 (承上例)

The rectangular equation for r = f(θ) = sin θ is given by r = sin θ ⇒ r 2 = r sin θ ⇒ x 2 + y 2 = y

⇒ x 2 + (y 1

2 ) 2 = ( 1 2 ) 2 .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 41/54

(47)

Section 8.4

Area and Arc Length in Polar Coordinates

(極坐標上的圖形面積與弧長)

(48)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

示意圖

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 43/54

(49)

Consider a polar region given by

R = {(r, θ) | α ≤ θ ≤ β, 0 ≤ r ≤ f(θ)}

with 0 < β − α ≤ 2π. If the region R is partitioned into n polar sectors (極坐標扇形) by the rays r = θ i (i = 1, 2, . . . , n) with

α ≡ θ 0 < θ 1 < θ 2 < · · · < θ n −1 < θ n ≡ β, then the area of R should be

A = lim

n →∞

n i=1

1

2 [f(θ i )] 2 ∆θ i ,

where ∆θ i ≡ θ i − θ i −1 for i = 1, 2, . . . , n.

(50)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Thm 8.7 (Area in Polar Coordinates)

If f(θ) is conti. on [α, β] with 0 < β − α ≤ 2π , then the area of the polar region

R = {(r, θ) | α ≤ θ ≤ β, 0 ≤ r ≤ f(θ)}

is given by

A = 1 2

β

α

[f(θ)] 2 dθ.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 45/54

(51)
(52)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 47/54

(53)

示意圖 (承上例)

(54)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Arc Length in Polar Form

Thm 8.8 (Arc Length of a Polar Curve)

If f(θ) and f (θ) are conti. on [α, β] with 0 < β − α ≤ 2π , then the arc length of a polar curve r = f(θ) from θ = α to θ = β is given by

s =

β

α

r 2 + ( dr

) 2 dθ =

β

α

[f(θ)] 2 + [f (θ)] 2 dθ.

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 49/54

(55)

pf: From the proof of Thm 8.5, we know that

dx

= −f(θ) sin θ + f (θ) cos θ and dy

= f(θ) cos θ + f (θ) sin θ.

Then we immediately get (dx

) 2

+ (dy

) 2

=

[ − f(θ) sin θ + f (θ) cos θ ] 2

+

[ f(θ) cos θ + f (θ) sin θ ] 2

= [f(θ)] 2 + [f (θ)] 2 .

So, the arc length of the polar curve r = f(θ) is given by

s =

β √ ( dx

) 2 + ( dy

) 2 dθ =

β

[f(θ)] 2 + [f (θ)] 2 dθ.

(56)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 51/54

(57)

心臟線的示意圖 (承上例)

(58)

. . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . .

. .

. . . . .

Hung-Yuan Fan (范洪源), Dep. of Math., NTNU, Taiwan Chapter 8, Calculus B 53/54

(59)

Thank you for your attention!

Figure

Updating...

References

Related subjects :