• 沒有找到結果。

02+6

N/A
N/A
Protected

Academic year: 2022

Share "02+6"

Copied!
64
0
0

加載中.... (立即查看全文)

全文

(1)

2010/12/03 String Seminar @ NTU

f(R) Modified Gravity

with Chameleon Mechanism

Cosmological & Solar-System Tests

Collaborators : Wei-Ting Lin 林韋廷 @ Phys, NTU

Dark Energy Working Group @ LeCosPA & NCTS-FGCPA

Je-An Gu 顧哲安

臺灣大學梁次震宇宙學與粒子天文物理學研究中心

Leung Center for Cosmology and Particle Astrophysics (LeCosPA), NTU

arXiv:1009.3488

(2)

2010/12/03 String Seminar @ NTU

f(R) Modified Gravity

with Chameleon Mechanism

Cosmological & Solar-System Tests

Collaborators : Wei-Ting Lin 林韋廷 @ Phys, NTU

Dark Energy Working Group @ LeCosPA & NCTS-FGCPA

Je-An Gu 顧哲安

臺灣大學梁次震宇宙學與粒子天文物理學研究中心

Leung Center for Cosmology and Particle Astrophysics (LeCosPA), NTU

arXiv:1009.3488

(3)

Outline

Introduction

Cosmological & Solar-System Tests of f(R) Modified Gravity

Modified Gravity: f(R) and Designer f(R)

f(R) Modified Gravity with Chameleon mechanism : Solar-System Tests

(appendix)

(appendix)

(highlight of our work)

Coffee Time announcement

(4)

Introduction

(5)

Concordance: 

= 0.73 , 

M

= 0.27

Accelerating Expansion

(homogeneous & isotropic) Based on FLRW Cosmology

Observations (which are driving Modern Cosmology)

(6)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy) Many success factors:

 fit data

 connections:

- to famous person: Einstein - to well known theory: QFT - to nature of creator: simple

(7)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy) Many success factors:

 fit data

 connections:

- to famous person: Einstein - to well known theory: QFT - to nature of creator: simple Issues:

 (why small)  problem

 (why now) coincidence problem To avoid the issues,

necessary condition:

Energy density changes with time.

(8)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy) Issues:

 (why small)  problem

 (why now) coincidence problem

• Quintessence / Phantom

(a simple realization) To avoid the issues,

necessary condition:

Energy density changes with time.

(9)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW

based on

(10)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom

minimal coupling to gravity

Dark Energy

 

d x g V

S(min)

4

(11)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom

minimal coupling to gravity

non-minimal coupling to gravity (inevitably?) Einstein GR + Non-Min. Scalar Field

Dark Energy

 

d x g V

S(min)

4

 





d x g R V

S(nm) 4 2

2 1

(12)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom

minimal coupling to gravity

non-minimal coupling to gravity (inevitably?) Einstein GR + Non-Min. Scalar Field

Brans-Dicke gravity Scalar-Tensor gravity special case: f(R)

Dark Energy

 

R

f g x d R

g x d

SG

4

4

: action gravity

(13)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom

minimal coupling to gravity

non-minimal coupling to gravity (inevitably?) Einstein GR + Non-Min. Scalar Field

Brans-Dicke gravity Scalar-Tensor gravity

1. Modified Gravity (MG)

special case: f(R)

Dark Energy

MG ~

(14)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom 1. Modified Gravity (MG)

Dark Energy

MG ~

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW

(15)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom 1. Modified Gravity (MG)

Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW

2. Extra Dimensions

(16)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom 1. Modified Gravity (MG)

Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW 2. Extra Dimensions

? Is FLRW a good approximation ??

isotropic homogeneous

(17)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom 1. Modified Gravity (MG)

Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW 2. Extra Dimensions

3. Averaging Einstein Equations for an inhomogeneous universe

? Is FLRW a good approximation ??

(18)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy

Dark Geometry

G

μν

8πG

N

T

μν

3. Averaging Einstein Equations 2. Extra Dimensions

Non-FLRW

for an inhomogeneous universe

• 

(from vacuum energy)

(Gravity)

• Quintessence 1. Modified Gravity (MG)

Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW

(19)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy

Dark Geometry

G

μν

8πG

N

T

μν

• Extra Dimensions

• 

(from vacuum energy)

• Quintessence

• Averaging Einstein Equations for an inhomogeneous universe

Back reaction of inhomogeneities

(Gravity)

Gu and Hwang, Phy.Rev.D (2002);

Gu, Hwang and Tsai, Nucl.Phys.B (2004)

Chuang, Gu and Hwang, Class.Quant.Grav (2008)

Gu and Hwang, Phys.Rev.D (2006) Chen and Gu, arXiv:0712.2441 Gu, arXiv:0801.4737

Gu, Nucl.Phys.A (2010)

Shao, Chen and Gu, Phys.Rev.D (2009)

Gu and Hwang, Phys.Lett.B (2001) Gu, Mod.Phys.Lett.A (2008)

Gu, arXiv:0711.36

Dark Energy

• Modified Gravity (MG)

DE/MG WG LeCosPA

(20)

Current active members:

[ NTU ]

Je-An Gu (LeCosPA) (DE WG server)

Chien-Wen Chen (LeCosPA)(DE)

A. E. Romano (LeCosPA)(Inhomog., Inflation)

Huitzu Tu (LeCosPA)(DM)

Florian Borchers (Germany) Wei-Ting Lin (MG key worker)

Pao-Yu Wang (DE)

Tse-Chun Wang (MG) Yen-Tin Wu (MG)

[ NTNU ]

Wolung Lee

Chia-Chun Chang (DE & Structures)

Wetty Chao (DE)

Vincent Chu (Inhomogeneous Cosmo.)

[ NCTU ]

Tzuu-Kang Chyi

Friends & "historically" active members:

Feng-Yin Chang (LeCosPA, NTU)

Pisin Chen (LeCosPA Director, NTU)

Fei-Hung Ho (NCU) Pei-Ming Ho (NTU)

Qing-Guo Huang (KIAS, Korea)

Kwang-Chang Lai (NCTU)

Seokcheon (Sky) Lee (IoPAS) Guo-Chin Liu (TKU)

Debaprasad Maity (LeCosPA, NTU)

Kin-Wang Ng (IoPAS) (DE WG Leader)

Hau-Yu Liu (NTU & ASIAA)

Yen-Wei Liu (NTU)

Tao-Tao Qiu (CYCU) Yong Tian (NCU)

Keiichi Umetsu (ASIAA)

I-Chin Wang (NTNU)

Dark Energy (Modified Gravity) Working Group

2008.09 - present

2008.

03-08

[ NDHU ]

Tao-Mao Chuang (MG)

Meeting time in 2010 Fall Semester: Wednesday, 4 pm — (indefinite)

Webpage: http://lecospa.ntu.edu.tw/wg_list.php?wgid=2

(21)

DE / MG Working Group meeting

 Meeting time in 2010 Fall Semester: Wednesday, 4 pm — (indefinite)

 Webpage: http://lecospa.ntu.edu.tw/wg_list.php?wgid=2

(22)

DE / MG Working Group meeting

(23)

 Meeting time in 2010 Fall Semester: Wednesday, 4 pm — (indefinite)

 Webpage: http://lecospa.ntu.edu.tw/wg_list.php?wgid=2

DE / MG Working Group meeting

(24)

DE / MG Working Group meeting

Something you may never enjoy unless you attend this meeting !!

 Meeting time in 2010 Spring Semester: Wednesday, 4:30 pm — (indefinite)

 Webpage: http://lecospa.ntu.edu.tw/wg_list.php?wgid=2

(25)

Cosmological Models vs.

Dark Energy Modified Gravity

Dark Matter Inflation

Observations SNe Ia

LSS Lensing

CMB Inter-medium

(physical quantities)

d

L

(z)

matter power spectrum CMB A&P spectrum

Theoretical prediction Observational info

Technique / Know-how

(Dark Energy & Modified Gravity) Phenomenology

(not limited to DE models)

(26)

Phenomenology

 Je-An Gu, Chien-Wen Chen, and Pisin Chen,

“A new approach to testing dark energy models by observations,”

New Journal of Physics 11 (2009) 073029 [arXiv:0803.4504].

 Chien-Wen Chen, Je-An Gu, and Pisin Chen,

“Consistency test of dark energy models,”

Modern Physics Letters A 24 (2009) 1649 [arXiv:0903.2423].

 Chien-Wen Chen, Pisin Chen, and Je-An Gu,

“Constraints on the phase plane of the dark energy equation of state,”

Physics Letters B 682 (2009) 267 [arXiv:0905.2738].

 Chien-I Chiang, Je-An Gu, and Pisin Chen,

“Constraining the Detailed Balance Condition in Hořava Gravity with Cosmic Accelerating Expansion,”

to appear in JCAP [arXiv:1007.0543].

 Wei-Ting Lin, Je-An Gu, and Pisin Chen,

“Cosmological and Solar-System Tests of f (R) Modified Gravity,”

submitted for publication [arXiv:1009.3488].

Dark Energy

Modified Gravity

(27)

f(R) Modified Gravity

Cosmological & Solar-System Tests

(our work)

(28)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

as an essence of cosmology, need to pass

Purposes

as a theory of modified gravity, need to pass

Explain

cosmic acceleration

Model (parameterize)

deviation from GR

(29)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

For a given expansion history H(t), one can reconstruct f(R)

which generates the required H(t).

FACT

“designer f(R)”

OUR APPROACH

Consider the expansion H(t) parametrized via

the Chevallier-Polarski-Linder weff(z):

  z w w zz

w

CPL

0

a

1

with

current observational constraints (WMAP7+BAO+SN):

72 . 0

71 . 0

0 0.93 0.13, 0.41

053 . 0 980 . 0

a eff

w w

w

(2)

constant (1)

 

R w w

a

f

ini

q

j

f ;

0

, , ,

construct

qj : other cosmological parameters fini : initial condition of f(R)

(30)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

qj : other cosmological parameters fini : initial condition of f(R)

Example weff = 1

For a given expansion history H(t), one can reconstruct f(R)

which generates the required H(t).

FACT

“designer f(R)”

OUR APPROACH

Consider the expansion H(t) parametrized via

the Chevallier-Polarski-Linder weff(z):

  z w w zz

w

CPL

0

a

1

 

R w w

a

f

ini

q

j

f ;

0

, , ,

construct

f/H 02 +6 DE

2

H0

R

(31)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

qj : other cosmological parameters fini : initial condition of f(R)

Then, proceed to the other two tests of

 

R w w

a

f

ini

q

j

f ;

0

, , ,

“designer f(R)”

OUR APPROACH

Consider the expansion H(t) parametrized via

the Chevallier-Polarski-Linder weff(z):

  z w w zz

w

CPL

0

a

1

with

observational constraints (WMAP7+BAO+SN):

72 . 0

71 . 0

0 0.93 0.13, 0.41

053 . 0 980 . 0

a eff

w w

w

(2)

constant (1)

 

R w w

a

f

ini

q

j

f ;

0

, , ,

construct

(32)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

Key quantities distinguishing GR & MG

G G

eff

m m m

m

 Perturbed metric:

  dt a  

ij

dx

i

dx

j

ds

2

  1  2 

2

2

1  2  

 Evolution eqn. of matter density perturbation:

defined in :

0 4

2  

m eff m m

m

H   G  



late-time,

sub-horizon

(33)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

GR

1

1 G Geff

 

R RR

R RR

R eff

f f a k

f f a k f

G a k G

3 1 1

4 1 1 1

1 ,

2 2 2 2

 

R RR

R RR

f f a k

f f a k a

k

2 1 1

4 1 1 ,

2 2 2 2

f(R) MG

initial

;

, 2

2

R Ri RR

R f f

R f f

R

f f

late-time, sub-horizon

(34)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

GR

1

1 G Geff

 

R RR

R RR

R eff

f f a k

f f a k f

G a k G

3 1 1

4 1 1 1

1 ,

2 2 2 2

 

R RR

R RR

f f a k

f f a k a

k

2 1 1

4 1 1 ,

2 2 2 2

f(R) MG

initial

;

, 2

2

R Ri RR

R f f

R f f

R

f f

late-time, sub-horizon

 

R w w

a

f

ini

q

j

f ;

0

, , ,

“designer f(R)”

,

;

;

0, , ;

 

j Ri

a f q

w w R f a

 function of k

(35)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

E.g. w

eff

= 1

For the present time and k = 0.01h / Mpc.

Mpc 1

01 .

0

h

k

10

31

f

Ri

/ (now)

403 . 1

1Geff G 1 1.996

Observational constraint (Giannantonio et al, 2009):

initial

2 2

R Ri

RR R

f f

R f f

R f f

73

. 0

27 .

0

eff m

(36)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

E.g. w

eff

= 1

For the present time and k = 0.01h / Mpc.

Mpc 1

01 .

0

h

k

10

31

f

Ri

/ (now)

403 . 1

1Geff G 1 1.996

Observational constraint (Giannantonio et al, 2009):

initial

2 2

R Ri

RR R

f f

R f f

R f f

GR

most f (R)

Similar behavior for other weff(z).

73 . 0

27 .

0

eff m

(37)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

initial

2 2

R Ri

RR R

f f

R f f

R f f

E.g. weff = constant

/ (now)

GR

most f (R)

Similar behavior for other weff(z).

(38)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

initial

2 2

R Ri

RR R

f f

R f f

R f f

E.g. weff = CPL best fit

/ (now)

GR

most f (R)

Similar behavior for other weff(z).

 z w w zz

wCPL 0 a 1

(39)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

f

Ri

viable

w

eff

constant

initial

2 2

R Ri

RR R

f f

R f f

R f f

(40)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

(41)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

parameter space

survey around GR point

f = constant

1,0

 Viable fR ;w

eff

, f

ini

 

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

(constant weff)

(42)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

36 9

10 10 1

Ri eff

f w

parameter space

survey around GR point

f = constant

1,0

 Viable fR ;w

eff

, f

ini

 

6 6

10 1

10 1

G Geff

very small viable region

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

(constant weff)

(43)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

36 9

10 10 1

Ri eff

f

w closely

mimicking GR +

parameter space

survey around GR point

f = constant

1,0

 Viable fR ;w

eff

, f

ini

 

6 6

10 1

10 1

G Geff

indistinguishable from GR !!

very small viable region

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

(constant weff)

(44)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

The viable f(R) models in the parameter space (weff, fRi) around the GR point (

1,0) for constant weff.

w

eff

1

f

Ri GR

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

initial

2 2

R Ri

RR R

f f

R f f

R f f

(45)

Conclusion

Cosmic Expansion

Solar-System Test Cosmic Structure

 The existence of the designer models which pass the cosmic-structure test

would require fine-tuning of initial condition f

ini

.

 

R w w

a

f

ini

f ;

0

, ,

 Designer w.r.t. the constraint on {w

0

,w

a

} (by design) can pass the cosmic-expansion test.

 

R w w

a

f

ini

f ;

0

, ,

(observational)

 Among the designer models,

only those closely mimicking GR +  (in all the 3 tests) can pass the solar-system test.

 

R w w

a

f

ini

f ;

0

, ,

As a result,

the solar-system test rules out

the frequently studied designer models with that are distinct from  CDM in .

  R

f w

eff

  1

G G

eff

,

i.e., same as CDM in cosmic expansion

(46)

Appendix

(47)

Modified Gravity :

f(R) and designer f(R)

(Appendix)

(48)

Candidates: Modified Gravity vs. Dark Energy Einstein Equations

Modified Gravity

G

μν

8πG

N

T

μν

Dark Energy

Different effects (predictions) on:

 Cosmic expansion (background evolution): a(t)

 Evolution of cosmic perturbations: 

m

, ,  (k,a)

matter density perturb. metric perturb.

CL WL ISW SN BAO CMB

∞ tests !!

one tes t

Another motivation/goal of MG investigations:

Cosmological test of alternative gravity theories

(49)

Modified Gravity : L

G

= R + f (R) with flat RW

 Cosmic expansion (background evolution): a(t) one test

  

    

G

m

Rf

R

f H f

R

H f

R

H

2 2

6 1 3

8  

 

m DE DE

N

DE m

N

G p

G a

H a

3 3 4 a

a

3 8

: GR

2 2



 

     

G

m

f H f

R

H f

R

f

R

a

a   

2 1 2

1 6

1 3

4  

2

(modified gravity action)

2 2

,

R

f f R

f R

f

R

f

RR

 

 

 

2

2 6 2

6 H H H

a

R a

 



參考文獻

相關文件

Based on the forecast of the global total energy supply and the global energy production per capita, the world is probably approaching an energy depletion stage.. Due to the lack

† Institute of Applied Mathematical Sciences, NCTS, National Taiwan University, Taipei 106, Taiwan.. It is also important to note that we obtain an inequality with exactly the

Text A.. The activities that follow on p. 14-18 are designed to demonstrate how teachers can use “scaffolding strategies” to support student learning when using print media

You are a property agent working for the Quality Property Company. A potential client has contacted you from Australia because he will soon be moving to Hong Kong with

The WG hopes to make effective improvement recommendations on textbook publishing and pricing to provide students with quality and reasonably priced textbooks

• LQCD calculation of the neutron EDM for 2+1 flavors ,→ simulation at various pion masses & lattice volumes. ,→ working with an imaginary θ [th’y assumed to be analytic at θ

The Hilbert space of an orbifold field theory [6] is decomposed into twisted sectors H g , that are labelled by the conjugacy classes [g] of the orbifold group, in our case

[r]