Full text

(1)

2010/12/03 String Seminar @ NTU

f(R) Modified Gravity

with Chameleon Mechanism

Cosmological & Solar-System Tests

Collaborators : Wei-Ting Lin 林韋廷 @ Phys, NTU

Dark Energy Working Group @ LeCosPA & NCTS-FGCPA

Je-An Gu 顧哲安

臺灣大學梁次震宇宙學與粒子天文物理學研究中心

Leung Center for Cosmology and Particle Astrophysics (LeCosPA), NTU

arXiv:1009.3488

(2)

2010/12/03 String Seminar @ NTU

f(R) Modified Gravity

with Chameleon Mechanism

Cosmological & Solar-System Tests

Collaborators : Wei-Ting Lin 林韋廷 @ Phys, NTU

Dark Energy Working Group @ LeCosPA & NCTS-FGCPA

Je-An Gu 顧哲安

臺灣大學梁次震宇宙學與粒子天文物理學研究中心

Leung Center for Cosmology and Particle Astrophysics (LeCosPA), NTU

arXiv:1009.3488

(3)

Outline

Introduction

Cosmological & Solar-System Tests of f(R) Modified Gravity

Modified Gravity: f(R) and Designer f(R)

f(R) Modified Gravity with Chameleon mechanism : Solar-System Tests

(appendix)

(appendix)

(highlight of our work)

Coffee Time announcement

(4)

Introduction

(5)

Concordance: 

= 0.73 , 

M

= 0.27

Accelerating Expansion

(homogeneous & isotropic) Based on FLRW Cosmology

Observations (which are driving Modern Cosmology)

(6)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy) Many success factors:

 fit data

 connections:

- to famous person: Einstein - to well known theory: QFT - to nature of creator: simple

(7)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy) Many success factors:

 fit data

 connections:

- to famous person: Einstein - to well known theory: QFT - to nature of creator: simple Issues:

 (why small)  problem

 (why now) coincidence problem To avoid the issues,

necessary condition:

Energy density changes with time.

(8)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy) Issues:

 (why small)  problem

 (why now) coincidence problem

• Quintessence / Phantom

(a simple realization) To avoid the issues,

necessary condition:

Energy density changes with time.

(9)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW

based on

(10)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom

minimal coupling to gravity

Dark Energy

 

d x g V

S(min)

4

(11)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom

minimal coupling to gravity

non-minimal coupling to gravity (inevitably?) Einstein GR + Non-Min. Scalar Field

Dark Energy

 

d x g V

S(min)

4

 





d x g R V

S(nm) 4 2

2 1

(12)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom

minimal coupling to gravity

non-minimal coupling to gravity (inevitably?) Einstein GR + Non-Min. Scalar Field

Brans-Dicke gravity Scalar-Tensor gravity special case: f(R)

Dark Energy

 

R

f g x d R

g x d

SG

4

4

: action gravity

(13)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom

minimal coupling to gravity

non-minimal coupling to gravity (inevitably?) Einstein GR + Non-Min. Scalar Field

Brans-Dicke gravity Scalar-Tensor gravity

1. Modified Gravity (MG)

special case: f(R)

Dark Energy

MG ~

(14)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom 1. Modified Gravity (MG)

Dark Energy

MG ~

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW

(15)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom 1. Modified Gravity (MG)

Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW

2. Extra Dimensions

(16)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom 1. Modified Gravity (MG)

Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW 2. Extra Dimensions

? Is FLRW a good approximation ??

isotropic homogeneous

(17)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy G

μν

8πG

N

T

μν

• 

(from vacuum energy)

• Quintessence / Phantom 1. Modified Gravity (MG)

Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW 2. Extra Dimensions

3. Averaging Einstein Equations for an inhomogeneous universe

? Is FLRW a good approximation ??

(18)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy

Dark Geometry

G

μν

8πG

N

T

μν

3. Averaging Einstein Equations 2. Extra Dimensions

Non-FLRW

for an inhomogeneous universe

• 

(from vacuum energy)

(Gravity)

• Quintessence 1. Modified Gravity (MG)

Dark Energy

1. Einstein GR 2. 3+1 space-time 3. RW metric

FLRW

(19)

Candidates: Dark Gravity vs. Dark Energy Einstein Equations

Geometry Matter/Energy

Dark Geometry

G

μν

8πG

N

T

μν

• Extra Dimensions

• 

(from vacuum energy)

• Quintessence

• Averaging Einstein Equations for an inhomogeneous universe

Back reaction of inhomogeneities

(Gravity)

Gu and Hwang, Phy.Rev.D (2002);

Gu, Hwang and Tsai, Nucl.Phys.B (2004)

Chuang, Gu and Hwang, Class.Quant.Grav (2008)

Gu and Hwang, Phys.Rev.D (2006) Chen and Gu, arXiv:0712.2441 Gu, arXiv:0801.4737

Gu, Nucl.Phys.A (2010)

Shao, Chen and Gu, Phys.Rev.D (2009)

Gu and Hwang, Phys.Lett.B (2001) Gu, Mod.Phys.Lett.A (2008)

Gu, arXiv:0711.36

Dark Energy

• Modified Gravity (MG)

DE/MG WG LeCosPA

(20)

Current active members:

[ NTU ]

Je-An Gu (LeCosPA) (DE WG server)

Chien-Wen Chen (LeCosPA)(DE)

A. E. Romano (LeCosPA)(Inhomog., Inflation)

Huitzu Tu (LeCosPA)(DM)

Florian Borchers (Germany) Wei-Ting Lin (MG key worker)

Pao-Yu Wang (DE)

Tse-Chun Wang (MG) Yen-Tin Wu (MG)

[ NTNU ]

Wolung Lee

Chia-Chun Chang (DE & Structures)

Wetty Chao (DE)

Vincent Chu (Inhomogeneous Cosmo.)

[ NCTU ]

Tzuu-Kang Chyi

Friends & "historically" active members:

Feng-Yin Chang (LeCosPA, NTU)

Pisin Chen (LeCosPA Director, NTU)

Fei-Hung Ho (NCU) Pei-Ming Ho (NTU)

Qing-Guo Huang (KIAS, Korea)

Kwang-Chang Lai (NCTU)

Seokcheon (Sky) Lee (IoPAS) Guo-Chin Liu (TKU)

Debaprasad Maity (LeCosPA, NTU)

Kin-Wang Ng (IoPAS) (DE WG Leader)

Hau-Yu Liu (NTU & ASIAA)

Yen-Wei Liu (NTU)

Tao-Tao Qiu (CYCU) Yong Tian (NCU)

Keiichi Umetsu (ASIAA)

I-Chin Wang (NTNU)

Dark Energy (Modified Gravity) Working Group

2008.09 - present

2008.

03-08

[ NDHU ]

Tao-Mao Chuang (MG)

Meeting time in 2010 Fall Semester: Wednesday, 4 pm — (indefinite)

Webpage: http://lecospa.ntu.edu.tw/wg_list.php?wgid=2

(21)

DE / MG Working Group meeting

 Meeting time in 2010 Fall Semester: Wednesday, 4 pm — (indefinite)

 Webpage: http://lecospa.ntu.edu.tw/wg_list.php?wgid=2

(22)

DE / MG Working Group meeting

(23)

 Meeting time in 2010 Fall Semester: Wednesday, 4 pm — (indefinite)

 Webpage: http://lecospa.ntu.edu.tw/wg_list.php?wgid=2

DE / MG Working Group meeting

(24)

DE / MG Working Group meeting

Something you may never enjoy unless you attend this meeting !!

 Meeting time in 2010 Spring Semester: Wednesday, 4:30 pm — (indefinite)

 Webpage: http://lecospa.ntu.edu.tw/wg_list.php?wgid=2

(25)

Cosmological Models vs.

Dark Energy Modified Gravity

Dark Matter Inflation

Observations SNe Ia

LSS Lensing

CMB Inter-medium

(physical quantities)

d

L

(z)

matter power spectrum CMB A&P spectrum

Theoretical prediction Observational info

Technique / Know-how

(Dark Energy & Modified Gravity) Phenomenology

(not limited to DE models)

(26)

Phenomenology

 Je-An Gu, Chien-Wen Chen, and Pisin Chen,

“A new approach to testing dark energy models by observations,”

New Journal of Physics 11 (2009) 073029 [arXiv:0803.4504].

 Chien-Wen Chen, Je-An Gu, and Pisin Chen,

“Consistency test of dark energy models,”

Modern Physics Letters A 24 (2009) 1649 [arXiv:0903.2423].

 Chien-Wen Chen, Pisin Chen, and Je-An Gu,

“Constraints on the phase plane of the dark energy equation of state,”

Physics Letters B 682 (2009) 267 [arXiv:0905.2738].

 Chien-I Chiang, Je-An Gu, and Pisin Chen,

“Constraining the Detailed Balance Condition in Hořava Gravity with Cosmic Accelerating Expansion,”

to appear in JCAP [arXiv:1007.0543].

 Wei-Ting Lin, Je-An Gu, and Pisin Chen,

“Cosmological and Solar-System Tests of f (R) Modified Gravity,”

submitted for publication [arXiv:1009.3488].

Dark Energy

Modified Gravity

(27)

f(R) Modified Gravity

Cosmological & Solar-System Tests

(our work)

(28)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

as an essence of cosmology, need to pass

Purposes

as a theory of modified gravity, need to pass

Explain

cosmic acceleration

Model (parameterize)

deviation from GR

(29)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

For a given expansion history H(t), one can reconstruct f(R)

which generates the required H(t).

FACT

“designer f(R)”

OUR APPROACH

Consider the expansion H(t) parametrized via

the Chevallier-Polarski-Linder weff(z):

  z w w zz

w

CPL

0

a

1

with

current observational constraints (WMAP7+BAO+SN):

72 . 0

71 . 0

0 0.93 0.13, 0.41

053 . 0 980 . 0

a eff

w w

w

(2)

constant (1)

 

R w w

a

f

ini

q

j

f ;

0

, , ,

construct

qj : other cosmological parameters fini : initial condition of f(R)

(30)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

qj : other cosmological parameters fini : initial condition of f(R)

Example weff = 1

For a given expansion history H(t), one can reconstruct f(R)

which generates the required H(t).

FACT

“designer f(R)”

OUR APPROACH

Consider the expansion H(t) parametrized via

the Chevallier-Polarski-Linder weff(z):

  z w w zz

w

CPL

0

a

1

 

R w w

a

f

ini

q

j

f ;

0

, , ,

construct

f/H 02 +6 DE

2

H0

R

(31)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

qj : other cosmological parameters fini : initial condition of f(R)

Then, proceed to the other two tests of

 

R w w

a

f

ini

q

j

f ;

0

, , ,

“designer f(R)”

OUR APPROACH

Consider the expansion H(t) parametrized via

the Chevallier-Polarski-Linder weff(z):

  z w w zz

w

CPL

0

a

1

with

observational constraints (WMAP7+BAO+SN):

72 . 0

71 . 0

0 0.93 0.13, 0.41

053 . 0 980 . 0

a eff

w w

w

(2)

constant (1)

 

R w w

a

f

ini

q

j

f ;

0

, , ,

construct

(32)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

Key quantities distinguishing GR & MG

G G

eff

m m m

m

 Perturbed metric:

  dt a  

ij

dx

i

dx

j

ds

2

  1  2 

2

2

1  2  

 Evolution eqn. of matter density perturbation:

defined in :

0 4

2  

m eff m m

m

H   G  



late-time,

sub-horizon

(33)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

GR

1

1 G Geff

 

R RR

R RR

R eff

f f a k

f f a k f

G a k G

3 1 1

4 1 1 1

1 ,

2 2 2 2

 

R RR

R RR

f f a k

f f a k a

k

2 1 1

4 1 1 ,

2 2 2 2

f(R) MG

initial

;

, 2

2

R Ri RR

R f f

R f f

R

f f

late-time, sub-horizon

(34)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

GR

1

1 G Geff

 

R RR

R RR

R eff

f f a k

f f a k f

G a k G

3 1 1

4 1 1 1

1 ,

2 2 2 2

 

R RR

R RR

f f a k

f f a k a

k

2 1 1

4 1 1 ,

2 2 2 2

f(R) MG

initial

;

, 2

2

R Ri RR

R f f

R f f

R

f f

late-time, sub-horizon

 

R w w

a

f

ini

q

j

f ;

0

, , ,

“designer f(R)”

,

;

;

0, , ;

 

j Ri

a f q

w w R f a

 function of k

(35)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

E.g. w

eff

= 1

For the present time and k = 0.01h / Mpc.

Mpc 1

01 .

0

h

k

10

31

f

Ri

/ (now)

403 . 1

1Geff G 1 1.996

Observational constraint (Giannantonio et al, 2009):

initial

2 2

R Ri

RR R

f f

R f f

R f f

73

. 0

27 .

0

eff m

(36)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

E.g. w

eff

= 1

For the present time and k = 0.01h / Mpc.

Mpc 1

01 .

0

h

k

10

31

f

Ri

/ (now)

403 . 1

1Geff G 1 1.996

Observational constraint (Giannantonio et al, 2009):

initial

2 2

R Ri

RR R

f f

R f f

R f f

GR

most f (R)

Similar behavior for other weff(z).

73 . 0

27 .

0

eff m

(37)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

initial

2 2

R Ri

RR R

f f

R f f

R f f

E.g. weff = constant

/ (now)

GR

most f (R)

Similar behavior for other weff(z).

(38)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

initial

2 2

R Ri

RR R

f f

R f f

R f f

E.g. weff = CPL best fit

/ (now)

GR

most f (R)

Similar behavior for other weff(z).

 z w w zz

wCPL 0 a 1

(39)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Expansion Cosmic Structure Solar-System Test Cosmological Test Local Test

f

Ri

viable

w

eff

constant

initial

2 2

R Ri

RR R

f f

R f f

R f f

(40)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

(41)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

parameter space

survey around GR point

f = constant

1,0

 Viable fR ;w

eff

, f

ini

 

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

(constant weff)

(42)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

36 9

10 10 1

Ri eff

f w

parameter space

survey around GR point

f = constant

1,0

 Viable fR ;w

eff

, f

ini

 

6 6

10 1

10 1

G Geff

very small viable region

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

(constant weff)

(43)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

36 9

10 10 1

Ri eff

f

w closely

mimicking GR +

parameter space

survey around GR point

f = constant

1,0

 Viable fR ;w

eff

, f

ini

 

6 6

10 1

10 1

G Geff

indistinguishable from GR !!

very small viable region

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

(constant weff)

(44)

f(R) Modified Gravity (MG):

Sg 161G

d4x g

R f

 

R

Cosmic Structure

Cosmic Expansion Solar-System Test

Cosmological Test Local Test

The viable f(R) models in the parameter space (weff, fRi) around the GR point (

1,0) for constant weff.

w

eff

1

f

Ri GR

Constraint on

5 2

0

5 2

0 15

10

, 5 2 0

10

, 0 10

H R Rf

H R f

RR R

f(R) MG with

Chameleon Mechanism

initial

2 2

R Ri

RR R

f f

R f f

R f f

(45)

Conclusion

Cosmic Expansion

Solar-System Test Cosmic Structure

 The existence of the designer models which pass the cosmic-structure test

would require fine-tuning of initial condition f

ini

.

 

R w w

a

f

ini

f ;

0

, ,

 Designer w.r.t. the constraint on {w

0

,w

a

} (by design) can pass the cosmic-expansion test.

 

R w w

a

f

ini

f ;

0

, ,

(observational)

 Among the designer models,

only those closely mimicking GR +  (in all the 3 tests) can pass the solar-system test.

 

R w w

a

f

ini

f ;

0

, ,

As a result,

the solar-system test rules out

the frequently studied designer models with that are distinct from  CDM in .

  R

f w

eff

  1

G G

eff

,

i.e., same as CDM in cosmic expansion

(46)

Appendix

(47)

Modified Gravity :

f(R) and designer f(R)

(Appendix)

(48)

Candidates: Modified Gravity vs. Dark Energy Einstein Equations

Modified Gravity

G

μν

8πG

N

T

μν

Dark Energy

Different effects (predictions) on:

 Cosmic expansion (background evolution): a(t)

 Evolution of cosmic perturbations: 

m

, ,  (k,a)

matter density perturb. metric perturb.

CL WL ISW SN BAO CMB

∞ tests !!

one tes t

Another motivation/goal of MG investigations:

Cosmological test of alternative gravity theories

(49)

Modified Gravity : L

G

= R + f (R) with flat RW

 Cosmic expansion (background evolution): a(t) one test

  

    

G

m

Rf

R

f H f

R

H f

R

H

2 2

6 1 3

8  

 

m DE DE

N

DE m

N

G p

G a

H a

3 3 4 a

a

3 8

: GR

2 2



 

     

G

m

f H f

R

H f

R

f

R

a

a   

2 1 2

1 6

1 3

4  

2

(modified gravity action)

2 2

,

R

f f R

f R

f

R

f

RR

 

 

 

2

2 6 2

6 H H H

a

R a

 



Figure

Updating...

References

Related subjects :