• 沒有找到結果。

Project for large-scale eigenvalue problems

N/A
N/A
Protected

Academic year: 2022

Share "Project for large-scale eigenvalue problems"

Copied!
14
0
0

加載中.... (立即查看全文)

全文

(1)

師大

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University, Taiwan

March 11, 2009

(2)

師大

Outline

1 Model problem

2 Center difference discretization

(3)

師大

Consider the Dirichlet boundary-value problem:

−∆u ≡ −uxx− uyy = 2π2sin πx sin πy, for (x, y) ∈ Ω, (1) u(x, y) = 0 (x, y) ∈ ∂Ω,

for Ω := {x, y|0 < x, y < 1} ⊆ R2 with boundary ∂Ω, which has the exact solution

u(x, y) = sin πx sin πy.

(4)

師大

(5)

師大

To solve (1) by means of a difference methods, one replaces the differential operator by a difference operator. Let

h := {(xi, yi)|i, j = 1, . . . , n},

∂Ωh := {(xi, 0), (xi, 1), (0, yj), (1, yj)|i, j = 0, 1, . . . , n + 1}, where xi = ih, yj = jh, i, j = 0, 1, . . . , n + 1, h := n+11 , n ≥ 1, is an integer.

(6)

師大

From the Taylor’s theorem, we have u(xi+ h) = u(xi) + u0(xi)h + h2

2 u00(xi) +h3

6 u000(xi) + h4

24u(4)1) u(xi− h) = u(xi) − u0(xi)h + h2

2 u00(xi) −h3

6 u000(xi) + h4

24u(4)2), where ξ1is between xi and xi+ hand ξ2 is between xiand

xi− h. Hence

u00(xi) = u(xi+ h) − 2u(xi) + u(xi− h)

h2 −h2

12u(4)(ξ)

= u(xi+1) − 2u(xi) + u(xi−1)

h2 −h2

12u(4)(ξ), where ξ is between xi− h and xi+ h.

(7)

師大

Similarly,

2u

∂x2(xi, yj) = u(xi+1, yj) − 2u(xi, yj) + u(xi−1, yj)

h2 −h2

12

4u

∂x4i, yj),

2u

∂y2(xi, yj) = u(xi, yj+1) − 2u(xi, yj) + u(xi, yj−1)

h2 −h2

12

4u

∂x4(xi, ηj), where ξi∈ (xi−1, xi+1)and ηj ∈ (yj−1, yj+1). It implies that

2u

∂x2(xi, yj) + ∂2u

∂y2(xi, yj)

= u(xi, yj−1) + u(xi−1, yj) − 4u(xi, yj) + u(xi+1, yj) + u(xi, yj+1) h2

−h2 12

 ∂4u

∂x4i, yj) + ∂4u

∂x4(xi, ηj)

 .

(8)

師大

Let uij denote an approximated value of function u at the grid point (xi, yj)for i, j = 1, . . . , n + 1. Then

−uxx(xi, yj) − uyy(xi, yj)

≈ −ui,j−1− ui−1,j+ 4ui,j− ui+1,j− ui,j+1 h2

with an error O(h2)and the equation

−uxx(xi, yj) − uyy(xi, yj) = 2π2sin πxisin πyj ≡ fij can be replaced by the following equation

−ui,j−1− ui−1,j+ 4ui,j− ui+1,j− ui,j+1

h2 = fij (2)

for i, j = 1, . . . , n.

(9)

師大

For j = 1, we have

−u1,0− u0,1+ 4u1,1− u2,1− u1,2 = h2f1,1, (3a)

−u2,0− u1,1+ 4u2,1− u3,1− u2,2 = h2f2,1, (3b) ...

−un−1,0− un−2,1+ 4un−1,1− un,1− un−1,2 = h2fn−1,1,(3c)

−un,0− un−1,1+ 4un,1− un+1,1− un,2 = h2fn,1. (3d) By the boundary condition, it holds that

u1,0 = u2,0= · · · = un,0= 0, (4a)

u0,1 = un+1,1= 0. (4b)

(10)

師大

Substituting (4) into (3), we get

4u1,1− u2,1−u1,2 = h2f1,1, (5a)

−u1,1+ 4u2,1− u3,1−u2,2 = h2f2,1, (5b) ...

−un−2,1+ 4un−1,1− un,1−un−1,2 = h2fn−1,1, (5c)

−un−1,1+ 4un,1−un,2 = h2fn,1. (5d) Let, for j = 1, . . . , n,

u:,j =

 u1,j

u2,j ... un,j

 , f:,j =

 f1,j

f2,j ... fn,j

 , A1=

4 −1

−1 . .. ...

. .. ... −1

−1 4

∈ Rn×n.

(11)

師大

Then (5) can be rewritten as following matrix form:

 A1 −In 

 u:,1

u:,2



= h2f:,1.

For j = 2, . . . , n − 1, using u0,j = un+1,j = 0, we have

−u1,j−1+ 4u1,j− u2,j−u1,j+1 = h2f1,j,

−u2,j−1− u1,j+ 4u2,j− u3,j−u2,j+1 = h2f2,j, ...

−un−1,j−1− un−2,j+ 4un−1,j− un,j−un−1,j+1 = h2fn−1,j,

−un,j−1− un−1,j+ 4un,j−un,j+1 = h2fn,j. Above equations can be represented as following matrix form:

 −In A1 −In 

 u:,j−1

u:,j

u:,j+1

= h2f:,j.

(12)

師大

For j = n, using u1,n+1= u2,n+1= un,n+1 = 0, we have

−u1,n−1+ 4u1,n− u2,n = h2f1,n,

−u2,n−1− u1,n+ 4u2,n− u3,n = h2f2,n, ...

−un−1,n−1− un−2,n+ 4un−1,n− un,n = h2fn−1,n,

−un,n−1− un−1,n+ 4un,n = h2fn,n. Above equations can be represented as following matrix form:

 −In A1 

 u:,n−1

u:,n



= h2f:,n.

(13)

師大

Therefore, (2) with boundary conditions is equivalent to a linear system Au = h2f with

A =

A1 −In

−In A1 . ..

. .. . .. −In

−In A1

∈ Rn2×n2, (6)

and

A1=

4 −1

−1 . .. ...

. .. ... −1

−1 4

 , u =

 u:,1 u:,2 ... u:,n

 , f =

 f:,1 f:,2 ... f:,n

 .

(14)

師大

Question

How to compute the eigenpair (λ, x) of the matrix A which λ is closest to a target value?

Exercise

Prove that the vector f is an eigenvector of J = (4I − A)/4, also an eigenvector of A. Furthermore,

J f = µf and Af = 4(1 − µ)f with

µ = cos πh.

參考文獻

相關文件

Department of Mathematics, National Taiwan University, Taipei, Taiwan E-mail

Project 1.3 Use parametric bootstrap and nonparametric bootstrap to approximate the dis- tribution of median based on a data with sam- ple size 20 from a standard normal

Department of Mathematics, National Taiwan University, Taipei, Taiwan E-mail

Department of Mathematics National Taiwan Normal University, Taiwan. June

Department of Mathematics National Taiwan Normal University, Taiwan. February

Department of Mathematics, National Taiwan Normal University, Taiwan..

Department of Mathematics, National Taiwan Normal University, Taiwan..

Feng-Jui Hsieh (Department of Mathematics, National Taiwan Normal University) Hak-Ping Tam (Graduate Institute of Science Education,. National Taiwan