• 沒有找到結果。

Numerical Integration

N/A
N/A
Protected

Academic year: 2022

Share "Numerical Integration"

Copied!
7
0
0

加載中.... (立即查看全文)

全文

(1)

師大

Numerical Integration

Tsung-Ming Huang

Department of Mathematics National Taiwan Normal University, Taiwan

June 7, 2009

T.M. Huang (Nat. Taiwan Normal Univ.) Numerical Integration June 7, 2009 1 / 7

(2)

師大

If we choose x0= a, x1= 12(a + b), x2 = b, h = (b − a)/2, and the second order Lagrange polynomial to interpolate f (x), then

Z b a

f (x)dx = Z x2

x0

 (x − x1)(x − x2)

(x0− x1)(x0− x2)f (x0) + (x − x0)(x − x2) (x1− x0)(x1− x2)f (x1) + (x − x0)(x − x1)

(x2− x0)(x2− x1)f (x2)

 dx +

Z x2

x0

(x − x0)(x − x1)(x − x2)

6 f(3)(ζ(x))dx.

(3)

師大

It holds that Z b

a

f (x)dx = h 1

3f (x0) +4

3f (x1) +1 3f (x2)



+ Z x2

x0

(x − x0)(x − x1)(x − x2)

6 f(3)(ζ(x))dx.

It can show that there exists ξ ∈ (a, b) such that Z b

a

f (x) dx = h

3 [f (x0) + 4f (x1) + f (x2)] − f(4)(ξ) 90 h5. This gives theSimpson’s rule formulation.

T.M. Huang (Nat. Taiwan Normal Univ.) Numerical Integration June 7, 2009 3 / 7

(4)

師大

To illustrate the procedure, we choose an even integer n and partition the interval [a, b] into n subintervals by nodes a = x0< x1 < · · · < xn= b, and apply Simpson’s rule on each consecutive pair of subintervals. With

h = b − a

n and xj = a + jh, j = 0, 1, . . . , n, we have on each interval [x2j−2, x2j],

Z x2j

x2j−2

f (x) dx = h

3 [f (x2j−2) + 4f (x2j−1) + f (x2j)] − h5

90f(4)j), for some ξj ∈ (x2j−2, x2j), provided that f ∈ C4[a, b].

(5)

師大

The composite rule is obtained by summing up over the entire interval, that is,

Z b a

f (x) dx =

n/2

X

j=1

Z x2j

x2j−2

f (x) dx

=

n/2

X

j=1

 h

3(f (x2j−2) + 4f (x2j−1) + f (x2j)) − h5

90f(4)j)



= h

3[f (x0) + 4f (x1) + f (x2) +f (x2) + 4f (x3) + f (x4) +f (x4) + 4f (x5) + f (x6)

...

+f (xn−2) + 4f (xn−1) + f (xn)] − h5 90

n/2

X

j=1

f(4)j)

T.M. Huang (Nat. Taiwan Normal Univ.) Numerical Integration June 7, 2009 5 / 7

(6)

師大

Hence Z b

a

f (x) dx = h

3[f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + 2f (x4) + 4f (x5) + · · · + 2f (xn−2) + 4f (xn−1) + f (xn)] − h5

90

n/2

X

j=1

f(4)j)

= h

3

f (x0) + 4

n/2

X

j=1

f (x2j−1) + 2

(n/2)−1

X

j=1

f (x2j) + f (xn)

−b − a

180 f(4)(µ)h4, for some µ ∈ (a, b).

(7)

師大

Composite Simpson’s Rule

Z b

a

f (x) dx = h 3

f (a) + 4

n/2

X

j=1

f (x2j−1) + 2

(n/2)−1

X

j=1

f (x2j) + f (b)

−b − a

180 f(4)(µ)h4,

where n is an even integer, h = (b − a)/n, xj = a + jh, for j = 0, 1, . . . , n, and some µ ∈ (a, b).

T.M. Huang (Nat. Taiwan Normal Univ.) Numerical Integration June 7, 2009 7 / 7

參考文獻

相關文件

Department of Mathematics, National Taiwan University, Taipei, Taiwan E-mail

∗ Department of Mathematics, Taida Institute of Mathematical Sciences, NCTS (Taipei), Na- tional Taiwan University, Taipei 106,

Department of Mathematics, National Taiwan University, Taipei, Taiwan E-mail

Department of Mathematics National Taiwan Normal University, Taiwan. March

Department of Mathematics National Taiwan Normal University, Taiwan. February

Department of Mathematics, National Taiwan Normal University, Taiwan..

Department of Mathematics, National Taiwan Normal University, Taiwan..

Feng-Jui Hsieh (Department of Mathematics, National Taiwan Normal University) Hak-Ping Tam (Graduate Institute of Science Education,. National Taiwan