• 沒有找到結果。

三五族氮化合物半導體薄膜之物理特性研究---子計畫I:GaN類半導體材料及物理結構光性之研究(III)

N/A
N/A
Protected

Academic year: 2021

Share "三五族氮化合物半導體薄膜之物理特性研究---子計畫I:GaN類半導體材料及物理結構光性之研究(III)"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

(2)  

(3) —(III) GaN    Study on optical properties and structure of GaN related compounds NSC 88-2112-M-009-021  87 8 1

(4) 88 7 31

(5)   . Raman scattering, scanning electron microscopy (SEM), atomic force microscopy         Raman (AFM), x-ray and photoluminescence (PL) scattering

(6)  SEM

(7) measurements. In our study, the phonon  AFM

(8) X-ray  spectra of films remain sharp without alloy  PL

(9)  !"#$%&'( formation after incorporation of small )*+,-./01234567809 amounts of In atoms. The SEM pictures of :;<=>?@#$ABCDE the sample surface reveal greatly reduced FGHIJKBLM.N)0OP<Q nanopits indicating better surface flatness 6?R SEM STABUVWXYZ<[ that is also supported by the AFM \].^_<`[BabcYZ<de micro-pictures and the multiple interference KBRVWABUfXYZ effect in the PL signals. More importantly, deK<g0BLhi@ PL jkA.lm isoelectronic doping has caused the linewidth n o < p q ? r m s < t u v w x at 15 K of the near-band-edge emission of GaN to decrease shaply to 10 meV or less, near-band-edge

(10) yzFJKU{|` reflecting improved optical property. [} 10 meVB~q%&'()*-1 Additionally, in order to further investigate €<b?‚ƒB„r †‡<ˆ‰ the dynamic optical transitions, we used the Š‹%&'€+,-‹1yz<= time resolved photoluminescence (TRPL) to >BŒuvyzBŽ‘’“” study the influences in isoelectronic In doped C time resolved PL

(11) "#$•yz GaN films. <–—˜ dynamic processes

(12) ? Keywords: isoelectronic doping, GaN, photoluminescence, TRPL.  ™%&'+, 809   ‘’“”C. 

(13) . Abstract. š"BJuv›œžŸ ¡q@ ¢£¤B¥t@¦|80OP§ ›œ¨ ©Cª«rtž.¬­® <¢£¯°?±²B-‹809³´<£. The isoelectronic In-doping effect in GaN films grown by metalorganic chemical vapoer deposition was investigated by 1.

(14) 0.1~0.2 Ɖm

(15) B© Hwang1 #$<3. µB™z¶·B¸'B P ®› œ]¹K<º»Bž.¼½<bc? ¾tB-‹¿ÀÁÂ.p·<!Ã" ÄÅÆ£µ<Ç£BÈÉÊË?ŽRÌ ÍACDB@ÎÏNÐÑªÒћœ ABÓÔ%&'+,<!"bÕÖ ,µ¹K ×ز+,ÙÚ¹K¸' ¹K?™8+,@Û09 (+,@ Ü09 Ý+,@Þ0ß©Þ0à?‹’áuv|Û09:;AB+,%&' 8)*uâãp·äåæçè?a -‹éáuv|Ü09:;B%&'(+ ,`ê¸'<¹Kä†æçè?² aB@ABŽëì%&'() *+,@809:;í"#$I1€µ ©:;€<g0BLîCY‹ïðñò ¤?B scanning electron microscopy, SEM

(16) B  B photoluminescence, PL

(17) #$óô"#$Ç£<1€µ© Põ€?. ?²a( ã45:;AB !"#[]<ç$½%<`ê?

(18) · Xä 1.1 µmol/min ‘B!"#[]&'( )*Ê+BYZUrã,©deBa M.l-< D.?¼/<Bԋ( <YZz¶0·91Ba2!"[\ ]345"B67YZ<Êde?R AUVWX3%<  ª

(19) ?‚ƒBR X 8 <BŽC DX TMIn

(20) ·Ô 0 âãX 2.12 µmol/min ‘B(10-10)8 jk|›ÆJR 34 arc min 9X 26 arc minB!:(+ ,@809:;ABÊ;b:;YZ <£µBUcabc5<<€B U&t5=>?re@ rAB? R  N

(21) BŽC +,©%&'()*+,|809: ;B@ 564 D 731 cm-1 ¥VWX80. 9| E2 © A1(LO)E–F?‚ƒB@+, (|Ç£ABUVWX A1(TO)E–F ' ‹ 534 cm-1

(22) <€FBîIÙÚj kU@G ¨ Rayleigh Scattering

(23) ‘âHB!Ê;~q+,()*|Ç £YZÊdeîԋ5!I<ÊABa œJKLMB<NOPQ?²aB TMIn

(24) ·âã‘BÇ£YZg6 CR/de<YZB`êÙÚS€. <HKBLî A1(TO)E–FjkUT< Ê%<N û( TMIn

(25)

(26) ·"bg( `[?¥t

(27) ·Xä 1.1 µmol/min ‘B < ·B67K„ 1000 BI

(28) · A1(TO)E–Fjk&'()*B!UV ¥„ 0B0.22B0.44B1.1B2.12 µmol/min? %&'(+,W809:;<5!' ŽLî ªìµ” SIMS

(29) =>?re@'X?‚ƒB-‹%&'( "”(<¹Kg0BI(©9<Œ[ <+,<Ç£BLM.h„•YZC< ‹ 0.2 %? E  —  [ \ ] ú  phonon-plasma Ž SEM

(30) " interaction

(31) a=>X A1(LO)<›ÆJ©' VWYZ<deK{( ·<g0BR ^B!t×_Ê%‹†`<aQ?2 !rt †ŽCDXB-‹+,(<Ç£ b/BcdYÄÅ<809Ç£Êt (a)BIYZ l ½[„.  ö ö -‹Ç£<ÄÅBt C ÷(0001) <¦øùú„ûüB./0123ýþ à metalorganic chemical vapor phase epitaxy

(32) "67809:;?IA 809:; 520 B600 Å

(33) "ú„  buffer layer

(34) B`ê¦øùûü©8 0945:;|’<5Ê ?Ž. 2.

(35) .l-<jk¢—B!tÊ%‹%&'+ ,<ªÒћœ? ˜™BŽ@ 400 X 750 nm <š›A V W X  Õ Öyz<œ yellow luminescence, YL

(36) BI.žŸ< ñ €¡¢B!tԋ:;lmno<?  TMIn

(37) ·âã‘Bi ñ€¡¢|p £}/B!UUVÇ£YZ£d e?Žõ¤6F¥i¡¢FBC Di ñ€¡¢<¦§¨ peak-to-valley 3 ratio

(38)  Billeb #$ YCY<©ª; ½B!U&t‡BcdYÄÅ<809 Ç£<deKt.ʸ<YD? „r †‡<ˆ‰Š‹%&'+, -‹1yz<=>BŒuvyzBŽ ‘’“”C"#$•<– JzR 16 meV 9} 10 meVBLî@Ƌ —˜?҄«m.¬%&'(+, 1.1 µmol/min {.|D<}~B!Ç<›Æ 809:;<•­O‘’B„!®5 J½lçYCY<ÌÍ€s[?! +B(+,„ 2.12 µmole/min <Ç£ú ‚ I2 ›ÆJg[<}~U©ƒ„€]3 „¯Y?¼/<B°Y:B-‹t -qBI•¹KR 1.7×1019 cm-3 9X ±.%&'(+,<Ç£I­O‘’.¼ 3×1017 cm-3 BYB(+,b809 /<Ê%²+,(<809:;<­ :;<Ùڕ¹K †äåæçè? O‘’„ 68 psBa.+,(<­O‘’ Y‡B%&'(+,Ub:;< „ 30 ps?³´µ¶·<tBŽbg KÔ 300 k 9} 12 K ‘B+,(< <ˆ‰ defects

(39) ©Šˆ vacancies

(40) ? 7 I2 jkƒBŽUfXåæC 809:;BI­O‘’Ô 68 ps m9} ‹<jk¥@ 363 nm D 377 nmB„ 48 ps²a+,(<Ç£BI­O‘’L jkr/BªA -çŒK?IAB bg?!‚ʸ_<¹ —˜‹+,(< 363 nm t I3 Fa 377 nm tw— 809Ç£ŸVWX²º<­O‘’Ê{ -<yz donor-acceptor pair, DAP

(41) BŽ Kg0abgB»HM¨?„b/t VWX{ TMIn

(42) ·R 0 âãX 2.12 ±!‚D.UC—‹Iº(+,<Ç£B µmol/min ‘BI3 .[<Ž'¶ redshift

(43) Ž¼rÕ<#$B3Š< D.B¾tw—-|yzzM.' ½Y:?×_¥<B()*†ã8 ¶<D.?‚ƒBI3 |›ÆJR 50 meV 9 09:;A{B¬¤(+,lêB­O X 25 meVBa DAP |›ÆJBR 40 meV ‘’¾¿9} 30 ps?×_¨?ÀU<ti 9X 17 meV?ÔiW+B%&'(+, ‚D.û¤©K¬ŠBLîÁžà cb1<yz?‚ƒBŽLf XÊ%‹+,809:;|IjkB <D.BtÄ@Iº›œ³´hD? RVWX<­O‘’Ê{Kg0< Ž3‘!tԋ()*©9)*<’ K electronegativity

(44) “„ 1.8 <x”B ńBŽÆ„qÇ.È<<É@ ?(,µÊ˕?–*6BaM (+,<809ABLîItœ¹. N)e5at%&'(+,|:;BLî .Æ£µ<<€?RiBfWg< fh%&'(+,|809:;Ê;b :;5<<B-€U.YijB Ž2kl@mn툉? „opVW%&'(+,-809 : ; |   C   photoluminescence, PLBq

(45) <=>BŽrÏ2 Ç£K9} 15 KB`êspq<=> âã<“”K?Ž¥@+,© (+,|Ç£ABVWX†ts<jk' ‹ 358 nmB!tYuvÖwxy| y z exciton bound to shallow neutral donorBI2 or D0X

(46) ?{%&'()*+ ,<âãBI2 FLM.'¶B¾tI›Æ. 3.

(47) —˜?&ŽYÃBÊGÈ<< ¹ —˜-‹K<g0×_˵?Æ Ì<(ã:;ABÈ<<×_ WuQ6?a²BÍtÉ.È<B qÇÎhDhÈ<ŒÏЖpqa¢ —uvyz<¦¶©›ÆJgJ<D.B ¾tŽM.VWX!"D.?‚†‚“ фB(ã:;ABºÎ349 <ŠˆBh„(9mî½B” ØÒ-ÓÔpq΋&Õwx¤Ö6uÖ× ØBQ6†ÙZ]<ÚuÖ?!‚pq Ö6(‹809:;A¼v֍ BL­O‘’Ê{Kg0? ÛaÜBŽëì-%&'(+, <809:;¼†r>'e<#$? ê%&'()*+,}809:;‘B SEM :Ç£deK<b©[\] <`ê?aRUCDCF |›ÆJ.^_<9B:C€ <b©<ˆ‰<`ê?3‘%&'( +,<!uÝ-809:;<£µ.Y º»BLca-")ÞÄú<< ©£µ€.Yjß?. A1g(Al2O3). G aN. I ntensity (arb. units ). E2. R.T. Eg(Al2O3). A1(LO). A1( TO). TMIn (µmol /mi n). 0. 0.22 0.44 1.10 2.12. 300. 400. 500. 600. 700. 800. 900. -1. Ra m a n S h ift (cm ). 16. 15K. 14 12. 2. PL I ntensity @15K (arb. units). I FW HM (meV). 6 789:A1(TO);<

(48) => ?@*+

(49) AB. 10 0. 0. I2. I. 3. 0. 5. 1.0. 1.5. 2.0. 2. 5. TM In (µm ol/ mi n). TM In (µ mol/min) DA 0 0.22 Log x200 0.44 1.10 2.12. 350 360 370 380 400 500 600 700. W a v e le n gth (n m ).  I2I3  DAP

(50)   80 GaN GaN:In (2. 12 u mol/m in).  (a)-(e)

(51)   

(52) . Recom bi nation Li feti me (ps). PL in stensi ty (arb. units). 300 K. und ope d Ga N G aN:In. 70 60 50 40. 30 20. 0. 200. 40 0. 60 0. 8 00. 0. . . 80. 300 K 150 K 12 K. Dec ay Time (p s). 70 60 50 40 30.  !"#TMIn$% 1.1 µmol/min&'() *+&,- ./012345. 20. 0.0. 0.5. 1. 0. 1 .5. 2 .0. TM In (µ mol/ min ). 4. 2 .5. . 10 0. 200. T emperat ure (K). Ti me (ps). 30 0.

(53)  \2^!! C.. Y. Hwang, M. J. Schurman, W. E. Mayo, -C. Lu, R. A. Stall, and T. Salagaj, J. Electron. Master. 26, 243 (1997). \3^!! Kosawa, T. Kachi, H. Kano, Y. Taga, and M. Hashimoto, J. Appl. Phys. 75, 1098 (1994). \4^!! A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., Appl. Phys. Lett. 70, 2790 (1997).. 5.

(54)

參考文獻

相關文件

細目之砂紙,將絕緣體 及內部半導電層鉛筆狀

The properties of the raw and the purified CNTs were examined by thermal gravimetric analysis (TGA), Raman spectroscopy, nitrogen adsorption, field emission scanning electron

(1)針對具有中子研究專長者,具備下列要件之 一:①物理、化學、核工系所博士畢業,具 二年以上中子研究經驗;執行中子散射、繞

具二年以上中子研究經驗;執行中子散 射、繞射以及台澳中子計畫 SIKA 實驗設施 運轉計畫。2.凝態物理系所博士畢業,具良

出口毒性及關注化學物質:第一類至第三類毒性化學物質,應檢附經直轄市、縣(市)主管機關同意之輸出登記

III Raman Imaging of Raft Model Membrane.. Sphingomyelin and Cholesterol

在室溫時,少部分共價鍵中的電子吸收了足 夠的熱能跳出他的鍵結位置,進入共價鍵間

Several methods that modulation effective work function to maintain p-type gate material is the direction of future research, sush as microwave annealing with plasma