1218 第一二冊

全文

(1)

- 1 -

1218 第一、二冊 姓名 座號

一、單選題 (25 題 每題 4 分 共 100 分)

( )1.化簡 4 5(cos55 sin 55 ) cos130 sin130 i i    

   (A)1 (B)5 (C)  5i (D)5i (E)5 5i

( )2.不等式 x2 x  1  0 的解為 (A)  1  x 1 (B)x  1 或 x  1 (C) 1 3 2   x  1 3 2   (D)全部實數 (E)無解 ( )3.不等式 x 2y  6  0,7x 2y 18,x y  0 所成區域面積為 (A)15 (B)16 (C)17 (D)18

( )4.在△ABC 中,設A、B﹑C 之對應邊長分別為 a、b、c,若B  120,a 5,c 3,則△ABC 的外接圓面積為何? (A) 7 3 (B)49 3 (C) 7 3 (D) 49 3  ( )5.若 f (x) x4 3x3 x2 x 19,則 f (2.002)(求到小數點後第三位)之近似值為 (A)17.172 (B)17.203 (C)17.924 (D)17.002 ( )6.△ABC 中,sinA:sinB:sinC 5:3:7,則 secC  (A)2 (B)  2 (C) 2 (D)3

( )7.設 f (x)為一多項式,以 x 2 除之餘 2,以 x 3 除之餘 1,則最低次數之 f (x)為 (A)x2 5x 7 (B)x2 6x  10 (C)  x 4 (D)x  4 ( )8.設 3 2 a bi i   化簡後為 10 11 1313i,則 1 i a bi   可化為 (A) 3 5 17 i  (B)5 3 17 i  (C) 5 3 17 i   (D)3 5 17 i( )9.在△ABC 中,已知AB 3 1 ,BC 2,A  30,則 (A)AC 2 (B)AC1 (C)B  45 (D)C  15

( )10.設三直線 L1:x 2y  6  0,L2:7x 2y  18  0,L3:x y 0 圍成△ABC,又點 P(a,1)在△ABC 內部,則 a 的範圍為 (A)4  a

 10 7 (B)1  a  20 7 (C)1  a  10 7 (D)1  a  20 7 ( )11.若 P(x , y)是如圖三角形區域內的點,則 h (x , y)  1 3 y x   的最大值為 (A)6 7 (B) 1 3 (C) 1 5  (D)3 ( )12.設 x、y 0,若 xy2 36,則 3x y 的最小值為 (A)9 (B)12 (C)18 (D)27 ( )13.設二次函數 f(x) ax2 bx c 的圖形如下,則下列敘述何者有誤? (A)a 0 (B)b 0 (C)c 0 (D)b2 4ac 0 ( )14.若cos 1 3   且 0 2  

  ,則 3sin cos cos

4 4 2    的值為 (A)1 2 (B) 2 2 (C) 3 2 (D)1 ( )15.若行列式 1 1 1 2 2 2 3 3 3 2  a b c a b c a b c ,則 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 2 2 2        a c a b c a c a b c a c a b c (A) 4 (B) 2 (C) 2 (D) 4 ( )16.不等式 6x2 43x 15 0 的整數解有幾個? (A)5 個 (B)6 個 (C)7 個 (D)8 個

(2)

- 2 - ( )17.設直線 2x y 11與拋物線yx24在第二象限的交點為 A ,在第一象限的交點為 B ,若線段 AB 上一點 P 滿足 : 2 :1 AP BP , 則 P 點坐標為何? (A) 1 31, 3 3       (B)

2, 26

(C)

1,13

(D) 7 47 , 3 3        ( )18.設 f (x) x3 ax2 bx 6 能被 x 1、x 1 整除,則 f (2)  (A)36 (B)24 (C)6 (D)12 ( )19.如圖,AD BD: 2 : 3,DP CP: 1: 2,若APx ABy AC ,則數對

 

x y,  (A) 1 4, 3 15       (B) 2 8 , 3 15       (C) 4 1 , 15 3       (D) 8 2 , 15 3       ( )20.如圖,兩直線 L1、L2之方程式分別為 L1:x ay b 0、L2:x cy d  0;試問下列哪個選項是正確的? (A)a 0 (B)b 0 (C)c 0 (D)d  0 ( )21. △ABC 中,  C 90 ,AC5,BC12,則A 的六個三角函數值中,最大值為 (A)12 13 (B) 12 5 (C) 13 5 (D) 13 12 ( )22.設 k 為實數,若任意實數 x 均使 kx2 2x k 恆為正數,則 k 之範圍為何? (A)k  1 (B)0  k  1 (C)  1  k 0 (D)k  1 ( )23.設 a  26, b  20, ab  14,則以 a 、 b 為鄰邊所決定之三角形面積為 (A) 6 (B) 7 (C)8 (D) 9 ( )24.不等式x2y 2 0的圖形不通過第幾象限? (A)一 (B)二 (C)三 (D)四 ( )25.若 ax by 2 與 5x 4y  1  0 表示同一直線,則 a b  (A)  2 (B)2 (C)10 (D)18

數據

Updating...

參考文獻

Updating...

相關主題 :