# The general aims of mathematics curriculum are as follows:

(1)

(2)

## Diagrammatic Representation of the Framework of the Mathematics Curriculum

(3)

(4)

(5)

(6)

### Number Shape and Space Measures Data Handling Algebra

 Numbers to 10

 Numbers to 20

 Numbers to 100

 3-digit numbers

 4-digit numbers

 5-digit numbers

 Basic addition and subtraction (within 18)

(addition within 2 places; subtraction within 2 places, excluding decomposition)

(addition within 3 places; subtraction within 2 places)

(subtraction within 3 places; mixed operations of addition & subtraction)

 Addition and subtraction (IV) (within 4 places)

 Basic multiplication

(basic concept and computation)

 Multiplication (I)

(multiplier 1 digit and multiplicand 2 or 3 digits)

 Basic division

(basic concept and computation)

 Division (I)

(divisor 1 digit and dividend 2 or 3 digits)

 Mixed operations (I)

 Fractions (I)

(basic concept, comparison)

 3-D shapes (I)

(prisms, pyramids and spheres)

 3-D shapes (II)

(prisms, cylinders, pyramids and cones)

 Straight lines and curves

 2-D shapes

(polygons and circles)

(rectangles, squares, trapeziums, rhombuses, etc.)

(characteristics of parallelograms)

 Triangles

 Angles (I)

(angles and right angles)

 Angles (II)

(acute and obtuse angles)

 The four directions

 Parallel and perpendicular

 Length and distance (I) (basic concept, direct comparison, improvised unit)

 Length and distance (II) (centimetre)

 Length and distance (III) (metre)

 Length and distance (IV) (kilometre and

millimetre)

 Hong Kong money (I) (coins)

 Hong Kong money (II) (bank-notes)

 Time (I)

(hour, year, month, day, week)

 Time (II)

(hour, minute, a.m., p.m., day, year)

 Time (III) (second)

 Time (IV) (the 24-hour time)

 Weight

(gram and kilogram)

 Capacity

(litre and millilitre)

 Pictograms (I) (1 picture represents 1 unit)

 Block graphs (1 square represents 1 unit, average value)

Units in the overview are not arranged in the order of teaching sequence.

(7)

### Number Shape and Space Measures Data Handling Algebra

 Large numbers (approximation)

 Multiplication (II)

(multiplier 2 digits and multiplicand 2 or 3 digits)

 Division (II)

(divisor 2 digits and dividend 2 or 3 digits, divisibility)

 Acquaintance with modern calculating devices (calculators)

 Multiples and factors

 Common multiples and common factors

 Mixed operations (II) (the four operations)

 Fractions (II)

(types, equivalent fractions, addition and subtraction of fractions with the same denominator)

 Fractions (III)

(addition and subtraction of fractions with different denominators)

 Fractions (IV) (multiplication)

 Fractions (V) (division)

 Decimals (I) (basic concept)

 Decimals (II) (addition and subtraction)

 Decimals (III) (multiplication)

 Decimals (IV) (division)

 Decimals (V)

(conversion between decimals and fractions, comparison of fractions)

 Percentages (I)

(basic concept, convert percentages into decimals or fractions and vice versa)

 Percentages (II) (uses of percentages)

 Fitting and dissecting shapes

 Symmetry

 The eight compass points

 3-D shapes (III) (characteristics of prisms, pyramids and spheres)

 3-D shapes (IV) (vertices, edges, faces and sections)

 Circles

 Perimeter (I)

(irregular shapes, squares and rectangles)

 Perimeter (II) (circumference)

 Area (I)

(square centimetre, square metre, squares, rectangles)

 Area (II)

(parallelograms, triangles, trapeziums and polygons)

 Volume (I)

(cubic centimetre, cubic metre, cuboids, cubes)

 Volume (II)

(capacity and volume)

 Speed

(metre per second, kilometre per hour)

 Pictograms (II)

(1 picture represents 10 or 100 units)

 Bar charts (I)

(1 square represents 1, 2, 5 or 10 units, average value)

 Bar charts (II) (compound bar charts, 1 square represents 50 or 100 units)

 Bar charts (III)

(frequency counts of 1000 or above)

 Averages

 Broken line graphs

 Elementary algebra (algebraic symbols)

 Simple equations (I) (involving one step in finding solution)

 Simple equations (II) (involving two steps in finding solution)

Units in the overview are not arranged in the order of teaching sequence.

(8)

### Number and Algebra Measures, Shape and Space Data Handling

 Directed Numbers and the Number Line

 Numerical Estimation

 Approximation and Errors

 Rational and Irrational Numbers

 Using Percentages

 Rate and Ratio

 Formulating Problems with Algebraic Language

 Manipulations of Simple Polynomials

 Laws of Integral Indices

 Factorization of Simple Polynomials

 Linear Equations in One Unknown

 Linear Equations in Two Unknowns

 Identities

 Formulas

 Linear Inequalities in One Unknown

 Estimation in Measurement

 Simple Idea of Areas and Volumes

 More about Areas and Volumes

 Introduction to Geometry

 Transformation and Symmetry

 Congruence and Similarity

 Angles Related with Lines and Rectilinear Figures

 Simple Introduction to Deductive Geometry

 Pythagoras’ Theorem

 Introduction to Coordinates

 Coordinate Geometry of Straight Lines

 Trigonometric Ratios and Using Trigonometry

 Introduction to Various Stages of Statistics

 Construction and Interpretation of Simple Diagrams and Graphs

 Measures of Central Tendency

 Simple Idea of Probability

### Note: The learning units of Key Stages 1 and 2, and Key Stage 3 are extracted respectively from the two curriculum documents: Mathematics Education Key

Learning Area – Mathematics Curriculum Guide (P1 – P6) (2000) and Syllabuses for Secondary Schools – Mathematics (Secondary 1 – 5) (1999).

(9)

8

8

(10)

### (The expected achievements of learners in this type of generic skills cannot be suitably classified according to Key Stages)

Descriptors of Expected Achievements Across the School Curriculum

Exemplars of Implementation in Mathematics Education

Understanding working relationships Learners will learn to

 clarify and accept various roles and responsibilities of individual members in a team and be willing to follow team rules

 recognize that individuals as well as the team members have to take the consequences for their own actions

Learners

1. share responsibilities and understand the roles of individual members in doing mathematical group work like collecting data, measuring objects and presenting projects

2. understand and accept that members with different cultural backgrounds may have different interpretations of a mathematical problem (e.g. analyzing statistical data) 3. accept and follow the group decision in doing mathematical group work

Developing attitudes which contribute to good working relationships

Learners will learn to

 be open and responsive to others’ ideas;

appreciate, encourage and support the ideas and efforts of others

 be active in discussing and posing questions to others, as well as in exchanging, asserting, defending and rethinking ideas

 recognize and avoid stereotypes; withhold premature judgement until the facts are known

 be willing to adjust their own behaviour to fit the dynamics of various groups and situations

Learners

1. discuss and exchange ideas openly with others in completing tasks and solving mathematical problems

2. exercise patience and listen to others in the discussion of mathematical problems (e.g. when sharing experience in the process of investigating number patterns or formulating proofs of geometric problems)

3. value the contributions of others in accomplishing mathematical tasks or solving mathematical problems together

4. appreciate different solutions to mathematical problems presented by others (e.g.

using different approaches to prove mathematical theorems)

5. participate actively and pose questions in clarifying arguments in the solution of mathematical problems (e.g. discussing the strategies to be adopted in investigating practical statistical problems)

Achieving effective working relationships Learners will learn to

 select a strategy and plan cooperatively to complete a task in a team

 understand the strengths and weaknesses of members and build on the strengths to maximize the potential of the team

 liaise, negotiate and compromise with others

 reflect on and evaluate the strategy used by the group and make necessary adjustments

Learners

1. share experience in solving mathematical problems and select cooperatively a suitable strategy to solve a mathematical problem

2. clarify arguments objectively and rationally in solving mathematical problems (e.g. when examining the appropriateness of a particular strategy used to solve a mathematical problem)

3. liaise, negotiate and compromise with others in selecting a suitable strategy for solving a mathematical problem (e.g. use a synthetic or analytic approach in solving a geometrical problem)

(11)

### Communication is a dynamic and ongoing process in which two or more people interact in order to achieve a desired outcome or goal. In learning to communicate effectively, learners should learn to speak, listen, read and write effectively. They should learn to select the most appropriate means to convey a message in accordance with the purpose and context of the communication. They should use accurate and relevant information and organize it systematically and coherently for their audience. They should also evaluate the effectiveness of their communication and identify areas of improvement for action.

Descriptors of Expected Achievements Across the School Curriculum

Exemplars of Implementation in Mathematics Education

Key Stage One (Junior Primary) Learners will learn to

 comprehend and act appropriately on spoken instructions

 use clear and appropriate means of communication, both verbal and non-verbal, to express meaning and feelings

 read and write simple texts

Learners

1. describe objects such as cubes and prisms orally with simple and appropriate mathematical terms (e.g. a cube has six faces)

2. interpret drawings, tables, graphs (e.g. pictograms) and symbols (e.g. ＋, －, ×,

## 

)

3. present findings with drawings and symbols 4. present data with tables and graphs (e.g. block graphs)

5. describe drawings and symbols in plain language (e.g. 2＋3 as 2 plus 3)

6. express simple daily-life problems in mathematical language (e.g. use symbols like \$2 ×3 and graphs like bar graphs)

Key Stage Two (Senior Primary) Learners will learn to

 comprehend and respond to different types of texts

 use spoken, written, graphic and other non-verbal means of expression to convey information and opinions, and to explain ideas

 work and negotiate with others to develop ideas and achieve goals

Learners

1. interpret drawings, symbols (e.g. %), tables and graphs (e.g. broken line graphs)

2. describe and explain findings/results/data of mathematical tasks in both oral and written forms (e.g. the average score of a student’s performance in a test, the favorite fruit) 3. present results of tasks with appropriate drawings and symbols

4. present data with tables, charts and graphs (e.g. broken line graphs, straight line graphs) 5. describe and analyze data

6. present solutions of problems logically (e.g. use of “=” properly)

7. express simple problems in mathematical language (e.g. the percentage of discount is 10%) 8. discuss with others in accomplishing tasks such as projects

Key Stage Three (Junior Secondary) Learners will learn to

 understand, analyze, evaluate and respond to a range of different types of texts

 use appropriate language and/or other forms of communication to present information and different points of view, and to express feelings

 reflect and improve on the effectiveness of their own communication

 work and negotiate with others to solve problems and accomplish tasks

Learners

1. interpret numeric, symbolic and graphical presentations

2. describe findings or explain conjectures in both oral and written forms using mathematical language (e.g. the two triangles are congruent)

3. choose appropriate statistical diagrams/graphs to present given data and use appropriate mathematical terminology or symbols in explaining ideas

4. formulate and write simple geometric proofs involving 2-D rectilinear shapes with appropriate symbols, terminology and reasons

5. interpret and respond appropriately to others’ mathematical arguments in both oral and written forms

6. distinguish the difference between the language used in a mathematical context and daily life (e.g. rate, similar)

7. use mathematical language including graphs, figures and symbols to analyze and present possible solutions to a problem and discuss with others

(12)

### Creativity

Creativity is an important but elusive concept. It has been defined in a variety of ways. Some people define it as an ability to produce original ideas and solve problems, others see it as a process, and yet others take it as certain personal qualities. In fact, creativity is a complex and multifaceted construct. Within the individual, creative behaviour is the result of a complex of cognitive skills/abilities, personality factors, motivation, strategies, and metacognitive skills. A person’s creative performance may not correspond to his/her developmental stages.

Although the demanding process of teaching for creativity is hard to make routine, some principles apply in general. To develop students’

creativity, we ask them to go beyond the given information, allow them time to think, strengthen their creative abilities, reward their creative efforts, value their creative attributes, teach them creative thinking techniques and the Creative Problem Solving model, and create a climate conducive to creativity1. These principles can be employed in all KLAs.

(The expected achievements of the learners in this type of generic skills cannot be suitably classified according to key learning stages)

Descriptors of Expected Achievements Across the School Curriculum

Exemplars of Implementation in Mathematics Education

Learners will learn to

 strengthen creative abilities: fluency2, flexibility3, originality4, elaboration5, sensitivity to problems6, problem defining7, visualization8, imagination, analogical thinking9, analysis, synthesis, evaluation, transformation10, intuition, logical thinking, etc.

 develop creative attitudes and attributes:

imagination, curiosity, self-confidence, independent judgement, persistence and commitment, tolerance for ambiguity, openness to new and unusual ideas/methods/approaches, deferment of judgement, adaptability, willingness to take sensible risks, etc.

 Use and apply the Creative Problem Solving (CPS) Model and creative thinking techniques:

brainstorming, 6W thinking technique, 6 hats method, attribute listing11, idea checklists, synectics12, mind mapping, etc.

Learners

1. create geometric patterns with different shapes and tell stories with given mathematical sentences

2. devise their own way/strategy when solving problems such as different solutions to a problem of plane geometry

3. adopt different approaches to a task or problem, such as proving a geometrical theorem using a synthetic or an analytical approach

4. pose related problems such as “Can triangles other than equilateral triangles be used in tessellation?” and “Will the same relationship a2b2c2 in Pythagoras’

Theorem still hold if the triangle is not right-angled?”

5. formulate hypotheses such as the value of a fraction decreases as the denominator increases if the numerator is kept constant

6. be imaginative in visualizing 3-D shapes

7. use and apply the technique of synectics to relate different given information, and utilize analogies to help analyze problems (e.g. deducing the formula of the volume of a cylinder from that of a prism)

Notes:

1. Climate conducive to creativity: Respecting the novel and unusual, providing challenges, appreciating individuality and openness, encouraging open discussion, absence of conflicts, allowing time for thinking, encouraging confidence and a willingness to take risks, appreciating and supporting new ideas, etc.

2. Fluency: The ability to produce many ideas in response to an open-ended problem, question or task.

3. Flexibility: The ability to take different approaches to a task or problem, to think of ideas in different categories, or to view a situation from several perspectives.

4. Originality: Uniqueness, nonconformity in thought and action.

5. Elaboration: The ability to add details to a given idea, such as to develop and embellish the idea.

6. Sensitivity to problems: The ability to identify problems, list out difficulties, detect missing information, and ask good questions.

7. Problem defining: The capability to 1) identify the “real” problem, 2) isolate the important aspects of a problem, 3) clarify and simplify a problem, 4) identify sub-problems, 5) propose alternative problem definitions, and 6) define a problem broadly.

8. Visualization: The ability to fantasize and imagine, “see” things in the “mind’s eye” and mentally manipulate images and ideas.

9. Analogical thinking: The ability to borrow ideas from one context and use them in another; or the ability to borrow the solution to a problem and transfer it to another.

10. Transformation: The ability to adapt something to a new use, to “see” new meanings, implications, and applications, or to change an object or idea into another creatively.

11. Attribute listing: A creative thinking technique that involves listing out all the important characteristics of an item and suggesting possible changes or improvements in the various attributes.

12. Synectics: The joining together of apparently unrelated elements. This technique utilizes analogies and metaphors to help the thinker analyze problems and form different viewpoints.

(13)

### Critical Thinking is drawing out meaning from given data or statements. It is concerned with the accuracy of given statements. It aims at generating and evaluating arguments. Critical thinking is the questioning and enquiry we engage in to judge what to believe and what not to.

Descriptors of Expected Achievements Across the School Curriculum

Exemplars of Implementation in Mathematics Education

Key Stage One (Junior Primary) Learners will learn to

 extract, classify and organize information from a source

 identify and express main ideas, problems or central issues

 understand straightforward cause-and-effect relationships

 distinguish between obvious fact and opinion

 recognize obvious stereotypes, assumptions, inconsistencies and contradictions

 formulate questions, make predictions/estimations and hypotheses

 draw simple but logical conclusions not contradictory to given evidence and data

Learners

1. sort objects using various criteria such as shapes and sizes

2. choose the right tools to measure objects such as using measuring tapes to measure the “circumference” of a head

3. reason inductively (e.g. when exploring the commutative property of addition) 4. check the reasonableness of the answer to a problem (e.g. the number of apples

eaten by a boy per day might be too large to be realistic)

Key Stage Two (Senior Primary) Learners will learn to

 understand and make deductions/ inferences from sources

 cross reference other sources to determine the reliability of a source

 understand the concepts of relevance and irrelevance

 distinguish fact and opinion as well as source and evidence

 question obvious bias, propaganda, omissions, and less obvious fallacies

 formulate appropriate questions, make reasonable predictions and hypotheses

 draw logical conclusions base on adequate data and evidence, and make predictions about consequences

Learners

1. categorize information using various criteria such as properties of quadrilaterals 2. choose appropriate methods and units to measure objects, such as using the

method of displacement to measure the volumes of irregular objects

3. reason inductively (e.g. when exploring the formula for the area of a rectangle) 4. check the reasonableness of the solution to a problem (e.g. the steps for solving a

problem might be unreasonably complicated)

Key Stage Three (Junior Secondary) Learners will learn to

 compare different sources, note contrasts and similarities, and determine their reliability

 distinguish fact, opinion and reasoned judgment

 be aware that value orientations and ideologies would affect the perspective of a source

 recognize and challenge stereotypes, inconsistencies, emotional factors, and propaganda

 draw and test conclusions as well as hypotheses, identify reasonable alternatives and predict probable consequences

Learners

1. use inductive and deductive reasoning to study the properties of geometric shapes, such as when proving “the sum of the exterior angles of a convex polygon is 4 right angles” and “the base angles of an isosceles triangle are equal”

2. generalize observations in symbolic forms from concrete experiences (e.g. when generalizing the index laws from observing several examples in numbers) 3. judge whether the information given about a problem is relevant or not (e.g.

extraneous data given in a geometrical problem)

4. examine the reasonableness of the solution to a problem and evaluate the strategy adopted (e.g. evaluate the effectiveness of using the graphical method to solve simple linear equations)

(14)

### IT skills include the ability to use IT to seek, absorb, analyze, manage and present information critically and intelligently. In addition, IT will motivate and empower our learners to learn at their own pace and help them develop habits of self-learning, which will benefit them for life.

Descriptors of Expected Achievements Across the School Curriculum

Exemplars of Implementation in Mathematics Education

Key Stage One (Junior Primary) Learners will learn to

 operate computers in school

 input Chinese characters with a handwriting recognition device

 use multimedia resources to support learning with the help of teachers

 communicate and handle information with IT tools in learning activities

Learners

1. use suitable software to investigate number patterns and properties of numbers (e.g. odd, even, ascending, descending )

2. use suitable software to create and explore geometric patterns (e.g. squares, rectangles, triangles)

Key Stage Two (Senior Primary) Learners will learn to

 use a number of software packages for different purposes

 input Chinese characters with devices and the aid of an input method

 access information via computer networks and other media

 process information using IT tools

Learners

1. use suitable software to investigate the properties of shapes, draw and create geometric patterns ( e.g. draw squares, rectangles, triangles, circles and create geometric patterns with these figures)

2. use a spreadsheet to record data and create graphs for doing statistical projects (e.g. input data in a spreadsheet and present the data with line graphs, bar charts)

3. use the information obtained through Internet/Intranet in self-directed learning and when doing projects (e.g. symmetry )

Key Stage Three (Junior Secondary) Learners will learn to

 use appropriate IT tools to facilitate learning

 use IT tools and strategies for processing and presenting information

 communicate with others via e-mail

 verify and evaluate the accuracy and reliability of information

Learners

1. use scientific calculators/graphing calculators for various computational and exploratory activities (e.g. input data and create statistical graphs; draw straight lines and explore their relationship with slope)

2. use suitable software to explore the relations of numbers (e.g. number patterns), algebraic formula (e.g. formulae of area and volume) and graphical representations (e.g. pie charts and straight lines)

3. use suitable software to construct/explore appropriate statistical diagrams/graphs (e.g. bar charts, pie charts, line charts) to represent given data;

to find simple statistical measures (e.g. mean, mode) and to explore the meaning of experimental probability (e.g. tossing coin simulation)

4. use geometry software packages to explore properties of 2-D rectilinear geometric figures dynamically (e.g. the relationship among the angles or sides of a parallelogram); to explore and visualize geometric properties of 2-D and 3-D figures intuitively (e.g. transformation and symmetry)

5. use the information obtained through Internet/Intranet in self-directed learning and when doing projects (e.g. statistical projects, projects on the development of mathematics in China, stories and achievements of mathematicians) 6. judge the appropriateness of using IT in solving mathematical problems (e.g.

quicker to calculate 2sin30 mentally)

(15)

### Numeracy skills include the ability to perform basic computations, to use basic mathematical concepts in practical situations, to make reasonable estimates, to understand graphs, charts and numerical concepts in languages, to manage data, to handle money and do stock inventories.

Descriptors of Expected Achievements Across the School Curriculum

Exemplars of Implementation in Mathematics Education

Key Stage One (Junior Primary) Learners will learn to

 perform basic computations

 recognize and describe shape, position and direction

 develop an intuitive knowledge of measurement and measuring units, and use appropriate tools for measurements e.g. ruler, thermometer

 formulate and solve simple problems arising from collected data and constructed graphs

 read and use simple quantitative information

Learners

1. describe the number of objects with natural numbers

2. perform properly basic computations involving whole numbers

3. use non-standard and standard measuring tools in comparing measures of different objects

4. recognize basic directions: east, south, west and north

5. recognize and describe 2D-shapes (e.g. triangles and quadrilaterals) and 3-D shapes (e.g. pyramids and prisms)

6. read simple statistical graphs and charts (e.g. block graphs and simple pictograms)

Key Stage Two (Senior Primary) Learners will learn to

 perform numerical computations, calculate mentally and provide quick estimates of the accuracy of a calculation

 understand intuitively the properties of shape, position and direction

 extend measurement skills to concept areas such as volume

 collect, process, present and evaluate quantitative information

 use mathematical concepts to solve simple real-life problems

Learners

1. choose the correct forms of numbers in presenting information (e.g. using percentages to tell the discount obtained)

2. perform numerical computations to solve daily-life problems and evaluate their own work

3. apply formulae to find measures of simple 2-D shapes (e.g. the area of a triangle) 4. describe measures with appropriate units (e.g. using m2 to measure the area of a

courtyard while using cm2 to measure the area of a sheet of paper)

5. organize simple data and interpret simple statistical graphs in various daily-life situations

6. recognize the 8 compass points, e.g north-east, south-west, etc.

7. use equations to solve simple problems

Key Stage Three (Junior Secondary) Learners will learn to

 perform numerical manipulations and quick estimates of the accuracy of a calculation

 understand properties of shape, position, direction and movement

 apply formulae or choose the appropriate tools and strategies to find measures and note the approximate nature of measurement

 use appropriate tools and strategies for collecting, processing and presenting quantitative information

 estimate risks and chances through the use of elementary probability

 solve real-life problems utilizing quantitative information

Learners

1. manipulate numbers, algebraic symbols, trigonometric relations, etc. to solve real-life problems

2. apply numerical estimation strategies and estimation strategies in measurement to various real-life situations (e.g. the number of significant figures)

3. apply formulae to find measures of 2-D and 3-D shapes (e.g. the area of a sector and the volume of a sphere)

4. apply spatial concepts in real-life situations (e.g. the angle of elevation and bearings)

5. apply simple ideas of data handling to understand statistical data and graphs in various sources from real-life experience

6. apply simple ideas of probability in various real-life situations (e.g. the fairness of games)

(16)

### Problem solving involves using thinking skills to resolve a difficulty. It assembles facts about the problem and determines the best course of action.

Descriptors of Expected Achievements Across the School Curriculum

Exemplars of Implementation in Mathematics Education

Key Stage One (Junior Primary) Learners will learn to

 develop ideas about the problem and identify sources of information and help

 identify, under guidance, different ways of tackling the problem

 choose and implement a solution plan, using support and advice given

 follow the given step-by-step methods to check and describe the outcomes

Learners

1. use simple methods for solving problems (e.g. using addition to find the sum of money used in buying goods)

2. adopt various ways of solving problems (e.g. using drawing and manipulatives to do addition)

3. solve problems by choosing the correct given data (e.g. choosing the correct combination of coins for one exact bus fare)

Key Stage Two (Senior Primary) Learners will learn to

 identify the problem and describe its main features

 propose alternative courses of action for solving it

 plan and try out the selected option, obtain support and make changes when needed

 develop an appropriate method to measure the outcomes and examine the approach chosen

Learners

1. use different approaches to solving problems (e.g. finding the area of a shape by means of counting the number of squares, dissecting the shape into parts or using formulae)

2. make use of various tools in solving problems (e.g. measuring tapes and calculators)

3. choose the correct given data and relevant information to solve problems (e.g.

identify the correct height and base in finding the area of a triangle)

4. use past experience to solve new problems, for example, by comparing the new problems with similar ones solved before (e.g. comparing the ways of finding the area of a right-angled triangle and that of a general one)

5. adopt various ways of solving problems such as using tables and formulae (e.g. formulae for perimeter, area, etc.)

Key Stage Three (Junior Secondary) Learners will learn to

 explore the problem and identify the issue(s) at stake

 suggest and compare the possible outcomes of each alternative course of action and justify the option selected

 execute the planned strategy, monitor progress and revise the approach when necessary

 evaluate against established criteria the quality of outcomes, and review the effectiveness of the solution process

Learners

1. understand a given problem; devise an appropriate plan for solving problems (e.g. geometrical problem) and justify or evaluate the solution presented 2. appreciate and pursue a better strategy for solving problems (e.g. by

comparing different strategies for solving geometrical problems and comparing different data sets with means and medians)

3. judge and evaluate arguments of their own or others in presenting a solution to a mathematical problem (e.g. explain why “mode” is the best measure of the most popular size of shoes in a market)

4. formulate a mathematical solution when tackling a real-life problem (e.g.

finding the area of a layout plan of a flat)

(17)

### (The expected achievements of the learners in this type of generic skills cannot suitably be classified according to key learning stages)

Descriptors of Expected Achievements Across the School Curriculum

Exemplars of Implementation in Mathematics Education

(18)

### Study skills help to improve the effectiveness and efficiency of learning. They underpin the learning habits, abilities and attitudes that form the essential foundation for lifelong learning.

Descriptors of Expected Achievements Across the School Curriculum

Exemplars of Implementation in Mathematics Education

Key Stage One (Junior Primary) Learners will learn to

 identify the main points and ideas in different types of straightforward reading material

 use different forms of writing to present main ideas clearly

 collect information from given sources, organize them into predetermined categories and analyze them according to preset guidelines

 understand the need to set up a study plan and follow a given plan to meet short-term targets

Learners

1. understand concepts and do not learn only by rote memorization (e.g. students have to understand the concept of multiplication and build up the multiplication tables themselves instead of just memorizing the multiplication tables; understand the concept of perimeters and use various ways to find the perimeters of figures instead of using formulae only)

2. present simple problems in mathematical languages including symbols (e.g.

1+2=3) and graphs (e.g. pictograms)

3. use simple objects to build up mathematical concepts (e.g. use 1cm3 cubes or an abacus to grasp the concept of addition, subtraction; and use a pin board to grasp the concept of the perimeter and area of a rectangle)

Key Stage Two (Senior Primary) Learners will learn to

 identify main lines of reasoning, skim materials to gain general ideas of content and scan text to obtain main points

 use different forms and styles of writing for different purposes and present main ideas coherently in a given form and style of writing

 locate required information from a variety of sources, organize it into self-defined categories and assess it for completeness, accuracy and relevance

 develop short-term and intermediate study plans to meet targets and purposes of study identified by themselves

Learners

1. try to understand concepts and not to learn only by rote memorization (e.g.

students have to understand the concepts and formulae of areas and volumes instead of memorizing the formulae in solving problems)

2. use more aids to build up mathematical concepts (e.g. use a calculator to learn number patterns)

3. present problems in mathematical languages including symbols (e.g. simple algebraic equations) and graphs (e.g. bar charts)

4. use diagrams, pictures and charts to help understand mathematical concepts (e.g.

use travel graphs to understand the idea of speed)

5. learn from mistakes made in solving mathematical problems in homework exercises, tests, etc.

Key Stage Three (Junior Secondary) Learners will learn to

 identify accurately complex lines of reasoning and hidden ideas and distinguish facts from opinions

 select an appropriate form and style of writing for a specific purpose and develop a writing strategy for organizing ideas and information clearly and coherently

 define purposes of collecting information, critically investigate sources to distil relevant information and evaluate its quality and validity

 review and revise study plans developed for short-term, intermediate and long-term targets to meet new demands and to improve study performance

Learners

1. understand and do not only memorize by rote the meanings of different forms of mathematical objects, concepts and principles

2. generalize observations to a higher level of abstraction for better memorization and for transferring strategies to solving a wider range of problems

3. learn from mistakes made in solving mathematical problems in homework exercises, tests, etc.

4. identify key similarities and differences from working among various types of mathematical problems

5. search and select information from various sources including libraries, reference books, Internet, etc.

6. use diagrams, pictures and charts to help understand mathematical concepts (e.g.

use charts to present the hierarchy of the real number system)

(19)

(20)

### Problem-solving

HOTS/

Generic Skills

Values and Attitudes

Content-based Learning Dimensions

(21)

(22)

(23)

(24)

Updating...

## References

Related subjects :