• 沒有找到結果。

智慧型控制在線性超音波馬達之應用 陳維榮、陳昭雄

N/A
N/A
Protected

Academic year: 2022

Share "智慧型控制在線性超音波馬達之應用 陳維榮、陳昭雄"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

智慧型控制在線性超音波馬達之應用 陳維榮、陳昭雄

E-mail: 319728@mail.dyu.edu.tw

摘 要

本論文主要是發展ㄧ T-型自我組織-反覆式類神經模糊網路(Takagi-Sugeno-Kang-Type Self-Organizing Recurrent Neural Fuzzy Network;T-SORNFN)控制系統於線性超音波馬達軌跡跟隨。首先,透過網路結構與參數的調整法則訓

練T-SORNFN 學習超音波馬達 的逆向動態(Inverse Dynamics)。在T-SORNFN 中的模糊規則可以任意的增加或刪除,以獲 得適當的大小的網路結構,並利用監督式 的梯度下降法推導網路參數的調整法則以加速網路的收斂。另外,推導一變動的 學習率以確保網路學習的收斂。再者,一結合 T-SORNFN 和PD 控制器的逆向動態控制系統被發展來控制線性超音波馬達 於變動的環境,並且利用遞迴式最小平方法(Recursive Least-squares)來線上調整網路的輸出權重值,以獲得更精密的近似效 果。硬體方面,以個人電腦為基礎,並結合仿真公司的MRC-6810 伺服控制卡、AB1A 驅動器、並應用Visual C++軟體撰 寫程式,最後透過實驗平台,來驗證本論文所提方法的有效性。

關鍵詞 : 反覆式類神經模糊網路,線性超音波馬達,李阿普諾夫穩定法則,遞歸式最小平方法。

目錄

封面內頁 簽名頁 授權書...iii 中文摘

要...iv 英文摘要...

v 致謝...vi 目 錄...vii 圖目 錄...ix 表目 錄...xi 第一章 緒

論... 1 1.1 研究動機... 1 1.2 研究 目的... 2 1.3 文獻回顧... 2 1.4 論文架 構... 6 第二章 線性超音波馬達驅動系統... 7 2.1 線性 超音波馬達系統架構... 7 2.2 線性超音波馬達的種類... 14 2.3 線性超音 波馬達的架構... 15 第三章 線性超音波馬達數學模型... 17 3.1 線性超 音波馬達的作動方式... 17 3.2 線性超音波馬達工作原理和數學模型... 19 第四章 類神經 模糊網路控制系統... 27 4.1 類神經模糊網路系統介紹... 27 4.2 T-型反 覆式類神經模糊網路的結構... 27 4.3 T-型反覆式類神經模糊網路控制器和學習運算法則 .………

……….………..31 4.3.1 結構學習法則………...33 4.3.2 參數學習法則…………

………...35 4.3.3 T-型反覆式類神經模糊網路的收斂性分析……...38 4.4 線上自適應T-型反覆式類神經模糊 網路的控制系統 ………….. ... 41 第五章 模擬實驗與結

果... 43 5.1 線性超音波馬達驅動系統的實驗平台... 43 5.2 線性超音波馬達 逆向動態建模... 44 5.3 控制系統模擬... 45 5.3.1 CASE1 的模擬結 果... 48 5.3.2 CASE2 的模擬結果... 53 5.3.3 CASE3 的模擬結

果... 58 5.4 控制系統實驗... 63 5.4.1 CASE1 的實驗結 果... 63 5.4.2 CASE2 的實驗結果... 68 第六章 結論與未來展 望... 73 參考文獻... 74 參考文獻

[1]江田弘著,杜光宗編譯,精密定位技術及其設計技術,建宏出版社,1992。

[2] 江田弘著,杜光宗編譯,超精密工作機械的製作,建宏出版社,1995。

[3] M.Zhu,“Contact analysis and mathematical modeling of traveling wavezultrasonicvmotor”,IEEEcTransactiononcUltrasonics,Ferroele ctrics,Frequency Control,vol.51,no.6,pp.668-679,2004.

[4] F. J. Lin, R. J. Wai, K. K. Shyu, and T. M. Liu, “Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motoradrive”,IEEEaTransactionsaoncUltrasonics,Ferroelectrics,Freauency Control,vol.48,no.4,pp.900-913,2001.

(2)

[5] S. M. Yang, F. C. Lin, and M. T. Chen, “Micro-stepping control of a two-phase linear stepping motor with three-phase VSI inverter for high-speed applications,” IEEE Trans. Industry Appl.,vol. 40,no. 5, pp. 1257-1264, 2004.

[6] W. D. Chen, K. L. Yung, and K. W. Cheng, “ A learning scheme for low-speed precision tracking control of hybrid stepping motors,” IEEE Trans. Mechatr., vol. 11, no.3, pp. 362-365,2006.

[7] T. S. Hwang and J. K. Seok, “Observer-based ripple force compensation for linear hybrid stepping motor drives, “IEEE Trans. Industr.

Electr., vol. 54, no. 5, pp. 2417-2424, 2007.

[8] F. Betin, D. N. Pinchon and G. A. Capolino, “Fuzzy logic applied to speed control of a stepping motor drive,” IEEE Trans. Industr. Electr., vol. 47, no. 3, pp. 610-622, 2000.

[9] A. M. Rubaai and R. Kotaru, “Adaptation learning control scheme for a high-performance permanent-magnet stepper motor using online random training of neural networks,” IEEE Trans.Industry Appl., vol. 37, no. 2, pp. 495-501, 2001.

[10] E. N. Sanchez, A. G. Loukianov, and R. A. Felix, “Dynamic triangular neural controller for stepper motor trajectory tracking,” IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 32, pp. 24–30,2002.

[11] P. Melin and O. Castillo, “Intelligent control of a stepping motor drive using an adaptive neuro–fuzzy inference system,”Information Sciences, vol. 170, pp. 133–151, 2005.

[12]A. Rubaai, M. J. C. Sitiriche, M. Garuba, and L. Burge,“Implementation of artificial neural network-based tracking controller for high-performance stepper motor drives,” IEEE Trans.Industr. Electr., vol. 54, no. 1, pp. 218-227, 2007.

[13] C. J. Mantas and J. M. Puche, “Artificial neural networks are zero-order TSK fuzzy systems,”IEEE Trans. Fuzzy Systems, vol. 16, no. 3, pp. 630-643, 2008.

[14] C. F. Juang and Y. W. Tsao, “A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning,“ IEEE Trans. Fuzzy Systems, vol. 16, no. 6,pp.1411-1424,2008.

[15] C. W. Ting and C. Q. Member, “A novel blood glucose regulation using TSK0-FCMAC: a fuzzy CMAC based on the zero-ordered TSK fuzzy inference scheme,” IEEE Trans. Neural networks, vol.20, no. 5, pp. 856-871, 2009.

[16] R. J. Wai and P. C. Chen, “Intelligent tracking control for robot manipulator including actuator dynamics via TSK-type fuzzy neural network,” IEEE Trans. Fuzzy Systems, vol. 12, no. 4,pp.552-559, 2004.

[17] Y. Gao and M. Joo, “Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems,” IEEE Trans. Fuzzy Systems, vol. 11, pp. 462–477, 2003.

[18] C. S. Ouyang, W. J. Lee, and S. J. Lee, “A TSK-type neurofuzzy network approach to system modeling problems,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 35, no. 4, pp. 751–767,2005.

[19] F. J. Lin, P. H. Shen, and R. F. Fung, “RFNN control for PMLSM drive via backstepping technique,” IEEE Trans. Aerospace and Electr.

Systems, vol. 41 no. 2, pp. 620-644, 2005.

[20] S. Y. Cao, B. W. Wang, J. J. Zheng, W. M. Huang, L. Weng and W. L. Yan, “Hysteresis compensation for giant magnetostrictive actuators using dynamic recurrent neural network,”IEEE Trans.Magnetics, vol. 42, no. 4, pp. 1143-1146, 2006.

[21] J. S. Wang and C. S. G. Lee, “Self-adaptive recurrent neuro-fuzzy control of an autonomous underwater vehicle,” IEEE Trans. Robotics Automation, vol. 19, no. 2, pp. 283-295, 2003.

[22] F. J. Lin, S. Y. Chen, L. T. Teng, and H. Chu, “Recurrent functional-link-based fuzzy neural network controller with improved particle swarm optimization for a linear synchronous motor drive,” IEEE Trans. Magnetics, vol. 45, no. 8, pp. 3151-3165, 2009.

[23] C. F. Juang and J. S. Chen, “A recurrent fuzzy-network-based inverse modeling method for a temperature system control,” IEEE Trans.

Syst., Man, Cyberen. C, Appl. Reviews, vol. 37, no.3, pp.410-417, 2007.

[24] N. K Kasabov and Q. Song, “DENFIS: Dynamic evolving neural fuzzy inference system and its application for time-series prediction,”

IEEE Trans. Fuzzy Systems, vol. 10, no. 2, 144–154,2002.

[25] C. F. Hsu, “Self-organizing adaptive fuzzy neural control for a class of nonlinear systems,”IEEE Trans. Neural Networks, vol.18, no. 4, pp.

1232–1241, 2007.

[26] C. J. Lin and Y. C. Hsu, “Reinforcement hybrid evolutionary learning for recurrentwavelet-based neurofuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 15, no. 4, pp. 729–745,2007.

[27] C. J. Lin and Y. C. Hsu, “Reinforcement hybrid evolutionary learning for recurrent wavelet-based neurofuzzy systems,” IEEE Trans. Fuzzy Syst., vol. 15, no. 4, pp. 729–745,2007.

[28] G. L. McGinnity and G. Prasad, “Design for self organizing fuzzy neural networks based on genetic algorithms,” IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 755–766, 2006.

[29] M. J. Er, Z. G. Li, H. N Cai, and Q. Chen, “Adaptive noise cancellation using enhanced dynamic fuzzy neural networks,” IEEE Trans.

Fuzzy Systems, vol. 13, no. 3, pp. 331–342,2005.

[30] C. S. Chen, “Self-organizing adaptive neural fuzzy control for electrically driven robotmanipulators,” Proc. the Inst. of Mech. Engin., I, J.

of Syst. Control Engin., vol. 222, no. 4, pp.231-246,2008.

參考文獻

相關文件

{ Title: Using neural networks to forecast the systematic risk..

CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Performance of technical analysis in growth and small

CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Performance of technical analysis in growth and small

Random Forest: Theory and Practice Neural Network Motivation.. Neural Network Hypothesis Neural Network Training Deep

They are suitable for different types of problems While deep learning is hot, it’s not always better than other learning methods.. For example, fully-connected

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013..

Attack is easy in both black-box and white-box settings back-door attack, one-pixel attack, · · ·. Defense

This study aimed to establish the strength models of High-Performance Concrete (HPC) using Nonlinear Regression Analysis (NLRA), Back-Propagation Networks (BPN) and