• 沒有找到結果。

Performance Evaluation of Piezoelectric Synthetic Jet Actuators Using Design Parameters Approach 楊育彰、羅正忠

N/A
N/A
Protected

Academic year: 2022

Share "Performance Evaluation of Piezoelectric Synthetic Jet Actuators Using Design Parameters Approach 楊育彰、羅正忠"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

Performance Evaluation of Piezoelectric Synthetic Jet Actuators Using Design Parameters Approach

楊育彰、羅正忠

E-mail: 9314532@mail.dyu.edu.tw

ABSTRACT

The primary objective of active flow control research is to develop a cost-effective technology that has the potential for revolutionary advances in aerodynamic performance and maneuvering compared to conventional approaches. The development of such systems have many implications for aerospace vehicles including: reduced mechanical complexity and hydraulic failure, reduced noise and weight, lower energy and fuel consumption, lower downtime and maintenance, enhanced maneuvering and agility with enhanced aerodynamic performance and safety. Interest in active flow control for aerospace applications has stimulated the recent

development of innovative actuator designs that create localized disturbances in a flow field. The primary objective of this thesis is to set up a finite element model of piezoelectric synthetic jet actuators and two experiment devices to research the optimization of designing parameters of influences in flow speed. The designing parameters are the area of piezoelectric synthetic jet, flow field volume, cavity depth and slot size. Characteristics of system (frequency, amplitude and flowing speed) will be measured

experimentally when the designing parameters are changed. By system model, the designing parameters will be optimized and the performance of piezoelectric synthetic jet will be evaluated. Natural frequencies and parameters of equivalent circuit of piezoelectric actuator will be measured by impedance analyzer, to provide a useful tool to make studies of the relation of dimensions and flowing speed of piezoelectric synthetic jet.

Keywords : piezoelectric actuators, synthetic jet actuators, impedance model Table of Contents

簽名頁 授權書...iii 中文摘要...v 英文摘

要...vi 誌謝...vii 目錄...viii 圖目錄...x 表目錄...xiii 符號說

明...xiv 第一章 問題描述 1.1壓電性質...1 1.2壓電致動 器...3 1.3研究背景...3 1.4國內外有關本問題之研 究...7 1.4.1在應用於提昇空氣動力效率方面...7 1.4.2在主動式氣流控制的應

用...8 1.4.3在有關壓電噴射氣流器特性研究方面...9 1.4.4壓電噴射氣流器的最佳化設計方面...10 1.4.5在應用於MEMS方面...11 1.4.6在阻抗模型方面...12 1.5設計因

素...12 1.6本文目的...13 第二章 設計與有限元素分 析 2.1實驗模具設計...15 2.2阻抗模型...26 2.2.1阻抗分析 儀...34 2.3有限元素法分析...36 2.3.1圓形薄

板...36 2.3.2壓電片...41 2.3.3致動圓

板...43 第三章 實驗方法與實驗量測 3.1實驗架構...45 3.2 模型(1)和模型(2)的比較...48 3.2.1三種實驗條件下的頻率響應...48 3.2.2四種實驗條件下 的RMS...54 3.2.3三種實驗條件下的流速比較...57 3.2.4氣室深度的比

較...61 第四章 結論與未來工作 4.1目前研究結果...66 4.2未來工 作...68 參考文獻...69

REFERENCES

[1] Smith, D., Amiray, M., Kibens, V., Parekh, D. and Glezer, A., "Modificati -on of Lifting Body Aerodynamics Using Synthetic Jet Actuators", AIAA Pa -per 98-0209,1998.

[2] Donovan, J. F., Kral, L. D. and Cary, A. W., "Active Flow Control Applied - to an Airfoil", AIAA Paper 98-0201,1998.

[3] Calkins, Frederick T., Mabe, James H., Smith, Josef P. and Arbogast, Dari -n J. ”Low Frequency (F=1.0) Multiayer Piezopolymer Synthetic Jets for A -ctive Flow Control”, AIAA Paper 2002-2823, 2002.

[4] Duraisamy, K. and Baeder, J. “Active Flow Control Concepts for Rotor Air -foils Using synthetic jets”, AIAA Paper 2002-2835, 2002.

(2)

[5] Corpening, J. and Reasonover, C. “An Experimental and Analytical Investi -gation of Boundary Layer Reattachment Using Piezoelectric Synthetic Jet -Actuators”, AIAA Paper 2002-0006, 2002.

[6] Gilarranz, L., Traub, L. W. and Rediniotis, O.K. ”Characterization of a -Compact, High-Power Synthetic Jet Actuator for Flow Separation Control” -, AIAA Paper 2002-0127, 2002.

[7] Smith, B. L. and Glezer, A. “Vectoring and Small Scale Motions Effected -in Free Shear Flows Using Synthetic Jet Actuators”, AIAA Paper 97-0213, 1997.

[8] Allen, M. G. and Glezer, A. “Jet Vectoring Using Zero Mass Flux Control - Jets”, AFOSR Workshop at Wright Patterson AFB, 1995.

[9] Pack, L. G. and Seifert, A. “Periodic Excitation for Jet Vectoring and E -nhanced Spreading”, AIAA Paper 99-0672, 1999.

[10] Smith, D. R., Kibens, V., Parekh, D. E. and Glezer, A. “Thrust Vectorin -g with Hybrid Synthetic Jet Actuator”, Proc. of the ASME Fluids Engine -ering Division Summer Meeting, Vancouver, B.C., 1997.

[11] Amitay, M., Honohan, A., Trautman, M., and Glezer, A., “Modification of - the Aerodynamics Characteristics of Bluff Bodies,” AIAA Paper 97-2004, 1997.

[12] Seifert, A., Bachar, T., Koss, D., Shepshelovich, M., and Wygnanski, I. -“Oscillatory Blowing: A Tool to Delay Boundary-Layer Seperation

”, AIA - Journal, 31(11), 1993.

[13] Roos, F. W., "Synthetic-Jet Microblowing for Forebody Flow-Asymmetry Mana -gement", AIAA Paper 98-0212, 1998.

[14] Crook, A., Sadri, A. M., and Wood, N. J., "The Development and Implement -ation of Synthetic Jets for the Control of Separated Flow", AIAA Paper -99-3176, 1999.

[15] Seifert, A., Eliahu, S., Greenblatt, D., and Wygnanski, I., "Use of Piez -oelectric Actuators for Airfoil Separation Control", AIAA Journal, 36(8) -, pp. 1535-1537, 1998.

[16] Seifert, A. and Pack, L. G, "Active Control of Separated Flows on Generi -c Configurations at High Reynolds Numbers", AIAA Paper 99-3403, 1999.

[17] Lachowicz, J. T., Yao, C., and Joslin, R. D., "Physical Analysis and Sc -aling of a Jet and Vortex Actuator", 1999 Joint ASME/JSME Fluid Engineeri -ng Conference, ASME Paper No. FEDSM99-6921, July 1999.

[18] Lin, Y.-L., Chyu, M. K., and Shih, T. I-P., "Skin Friction -Reduction Through Micro Blowing", AIAA Paper 98-0359, 1998.

[19] McManus, K. and Magill, J., "Airfoil Performance Enhancement Using Pulsed -Jet Separation Control", AIAA Paper 97-1971, 1997.

[20] Amitay, M., Smith, B. L., and Glezer, A., "Aerodynamic Flow Control Using -Synthetic Jet Technology", AIAA Paper 98-0208, 1998.

[21] Ho, C.-M. and Tai, Y.-C. “Review: MEMs and Its Applications for Flow Con -trol”, Journal of Fluids Engineering, 118(3), pp. 437-447, 1996.

[22] Smith, Douglas R.; Kibens, Valdis, Pitt, Dale M. and Hopkins, Mark A. “E -ffect of Synthetic Jet Arrays on Boundary Layer Control”, Proc. SPIE, V -ol. 3674, pp. 401-409, 1999.

[23] Lee, C. Y. and Goldstein, D. B., "Two Dimensional Synthetic Jet Simulatio -n", AIAA paper 2000-0406, 2000.

[24] Mallinson, Samuel G., Reizes, John A., Hong, G., Buttini, M., “Synthetic - jet actuators for flow control”, Proc. SPIE Vol. 3891, pp.

146-156, 1999.

[25] Gilbert, Michael G., Horner, Garnett C., “Actuator concepts and mechatron -ics”, Proc. SPIE Vol. 3326, pp. 214-222, 1998.

[26] Bailo, Kelly C., Brei, Diann E., “Investigation of PVdF active diaphragms - for synthetic jets”, Proc. SPIE Vol. 3991, pp. 220-231, 2000.

[27] Chen, Y., Liang, S., Aung, K., Glezer, A. and Jagoda, J., “Enhanced Mixin -g in a Simulated Combustor Using Synthetic Jet Actuators.”, AIAA Paper 9 -9-0449, 1999.

[28] Chen, Y., Scarborough, D., Liang, S., Aung, K. and Jagoda, J., “Manipulat -ing Pattern Factor Using Synthetic Jet Actuators”,AIAA Paper 2000-1023, 2000.

[29] Ritchie, B. D. and Seitzman, J. M., "Acetone Mixing Control of Fuel Jets U -sing Synthetic Technology: Scalar Field Measurements", AIAA Paper 99-0448, 1999.

[30] Ritchie, B. D. and Seitzman, J. M., ”Controlled fuel-air mixing using a synth -etic jet array”, AIAA Paper 2000-3465, 2000.

[31] Parekh, D. E., Kibens, V., Glezer, A, Wiltse, J. M., and Smith, D. M., “Inno -vative Jet Flow Control: Mixing Enhancement Experiments”, AIAA Paper 96-030 -8, 1996.

[32] Davis, S. A. and Glezer, A., “Mixing Control of Fuel Jets Using Synthetic Jet - Technology : Velocity Field Measurement”, AIAA Paper 97-0447, 1997.

[33] Davis, S. A. and Glezer, A., “The Manipulation of Large- Scales and Small-Sca -les in Coaxial Jet Using Synthetic Jet Actuators”, AIAA Paper 2000-0403, 2000.

[34] 吳坤城, “改良式合成噴射氣流器有限元素模型的建立和實驗量測與驗證”, 大葉大學機 械工程研究所碩士論文, 2002.

[35] 陳華斌, “壓電噴射氣流器的設計與實驗評估”, 大葉大學機械工程研究所碩士論文, 2003.

[36] Guy, Y., McLaughlin, T. E. and Morrow, J. A., “Velocity Measurements in a Synth -etic Jet”, AIAA Paper 2001-0118, 2000.

[37] Chen, F.-J., Yao, C., Beeler, G. B., Bryant, R. G., and Fox, R. L., "Developmen -t of Synthetic Jet Actuators for Active Flow Control at NASA Langley", AIAA Pap -er 2000-2405, 2000.

(3)

[38] Crook, A. and Wood, N. J., "Measurements and Visualizations of Synthetic Jets", - AIAA Paper 2001-0145, 2001.

[39] Gilarranz, J. L. and Rediniotis, O. K., "Compact, High-Power Synthetic Jet Actua -tors for Flow Separation Control", AIAAPaper 2001-0737, 2001.

[40] Kral, L. D., Donovan, J. F., Cain, A. B., and Cary, A. W., "Numerical Simulatio -n of Synthetic Jet Actuators", AIAA Paper 97-1824.1997.

[41] Rizzetta, D. P., Visbal, M. R., and Stanek, M. J., "Numerical Investigation of -Synthetic Jet Flow fields", AIAA Paper 98-2910, 1998.

[42] Mallinson, S. G., Reizes, J. A., Hong, G., and Haga, H., "The Operation and App -lication of Synthetic Jet Actuators", AIAA Paper 2000-2402, 2000.

[43] Guy, Y., McLaughlin, T. E. and Albertson, J. A. ” Effect of Geometric Paramete -rs on the Velocity Output of a Synthetic Jet Actuator”, AIAA Paper0126, 2002.

[44] Utturkar, Y., Mittal, R., Rampunggoon, P. and Cattafesta, L.,” Sensitivity of - Synthetic Jets to the Design of The Jet Cavity”, AIAA Paper 0124,2002.

[45] Chen, F.-J. et. al. , “Optimization of Synthetic Jet Actuators”, NASA Tech B -rief, LAR-16234, July, 2002.

[46] Kercher, D. S., Lee, J. B., Brand, O., Allen, M. G. and Glezer, A., “Microj -et Cooling Devices for Thermal Management of Electronics.”

[47] Coe, David J., “Fabrication Technology Approaches to Micromachined Syntheti -c Jets”, Ph.D. Dissertation, Georgia Institute of Technology, 2002.

[48] Muller, Michael O., Bernal, Luis P., Washabaugh, Peter D., Chou, Tsung-Kuan a -nd Najafi, Khalil, “ Flow Field and Performance of High Frequency Micromachi -ned Synthetic Jets”, AIAA Paper, 2002-0974, 2002.

[49] Muller, Michael O., Bernal, Luis P., Miska, Paul K, Washabaugh, Peter D., Cho -u, Tsung-Kuan, Parviz, Zhang, Chunbo and Najafi, Khalil,

“Flow Structure an -d Performance of Axisymmetric Synthetic Jets” AIAA Paper, 2001-1008, 2001.

[50] Muller, Michael O., Bernal, Luis P., Miska, Paul K, Washabaugh, Peter D., Par -viz, Babak Amir, Chou, Tsung-Kuan, Zhang, Chunbo and Najafi, Khalil, “Thru -st Performance of Micromachined Synthetic Jets” AIAA Paper, 2000-2404, 2000.

[51] Gallas, Q., Mathew, J., Kaysap, A., Holman, R., Nishida, T., Carrol, B., Shep -lak, M., Cattafesta, L., “Lumped Element Modeling of Piezoelectric-Driven S -ynthetic Jet Actuators”, AIAA paper 2002-0125, 2002.

[52] Brunahl Jurgen and Grishin, Alex M., “Piezoelectric Shear Mode Drop-on-Deman -d Inkjet Actuator”, Sensors and Actuators A, V.101, pp. 371-382, 2002.

[53] Kim, J., Ryu, Y. H., Choi S. B., “New Shunting Parameter Tuning Method for P -iezoelectric Damping Based on Measured Electrical Impedance”, Smart Mater. S -struct, 9, pp.868-877, 2000.

[54] ANSI/IEEE Standard 177, Standard Definitions and Methods of Measurement for Pi -ezoelectric Vibrators, 1966.

[55] ANSI/IEEE Standard 176-1987, Standard on Piezoelectricity, 1988.

參考文獻

相關文件

The purpose of this thesis is to propose a model of routes design for the intra-network of fixed-route trucking carriers, named as the Mixed Hub-and-Spoke

In order to investigate the bone conduction phenomena of hearing, the finite element model of mastoid, temporal bone and skull of the patient is created.. The 3D geometric model

The purpose of this thesis is to investigate the geometric design of curvic couplings and their formate grinding wheel selection, and discuss the geometric

This paper proposes a set of graph algorithm to improve the application of hill-climbing, Tested to speed up the program execution time is about 3.5 times speed up

The main objective of this system is to design a virtual reality learning system for operation practice of total station instrument, and to make learning this skill easier.. Students

The objective is to evaluate the impact of personalities balance in a project management team on the team’s performance.. To verify the effectiveness of this model, two

Therefore, this thesis applies the concept of the Habitat Suitability Index (HSI), brought from the Habitat Evaluation Procedure (HEP), to establish a mathematic model for factors

The objective of this research is to conduct the theoretical and experimental studies on how to use the Empirical Mode Decomposition method to process the response of a single