• 沒有找到結果。

Numerical analysis of piezoelectric energy harvesting system 蕭文裕、羅正忠

N/A
N/A
Protected

Academic year: 2022

Share "Numerical analysis of piezoelectric energy harvesting system 蕭文裕、羅正忠"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Numerical analysis of piezoelectric energy harvesting system 蕭文裕、羅正忠

E-mail: 324912@mail.dyu.edu.tw

ABSTRACT

A piezoelectric harvester can harvest energy from around a few micro-Watt (μ W) to a few milliwatts (mW); in fact, it’s really small. But why does it still attract many well-known research teams to set it as the key research area? That's because its mechanism is simple and its area is tiny (can less than 1cm 2 ), and in the process of micro-, it can be used with standard semiconductor

manufacturing process and the integration of integrated circuits, which are suitable for the demand of many other fields, such as:

wireless, telemetry, wireless multipoint distribution monitoring networks and MEMS, and so on. Because the energy that piezoelectric harvester can harvest is really very small, it is difficult to directly supply all kinds of electronic facilities with it.

Therefore, power must be consolidated and stored, and then be exported to supply an external facilities. This objective is twofold: 1.

The selection of the best adhesive location of piezoelectric patches in order to get the most out of converting energy. 2. Energy harvesting circuit analysis, to achieve the best conversion efficiency. This Matlab simulation tries to find how the beams under various boundary conditions vibrate, so that we can identify piezoelectric film adhesive law---adhesive in vibration response at the maximum, you can get the best conversion energy. And the interface circuit input impedance is the key to maximize energy

conversion, that is, the circuit input impedance must match with the impedance of piezoelectric equivalent output in order to get the highest conversion efficiency.

Keywords : MFC piezoelectric actuator, piezoelectric harvester, impedance matching, the vibration mode.

Table of Contents

中文摘要...iii ABSTRACT...iv 誌 謝...v 目錄...vii 圖目 錄...x 表目錄...xii 符號 表...xiii 第一章 緒論 1.1 研究背景...1 1.2 壓電材料與壓電效應...2 1.2.1 壓電材料的種類...2 1.2.2 壓電效

應...3 1.3 壓電致動器...6 1.3.1 單片壓電陶瓷(PZT)致動 器...6 1.3.2 單片狀壓電陶瓷加指叉式電極...6 1.3.3 主動式壓電纖維複合致動器...8 1.3.4 條 狀壓電纖維複合致動器...8 1.4 壓電致動器的機電模型...12 1.5 文獻回

顧...14 - viii - 1.5.1 擷能器能量轉換效率之研究...14 1.5.2 擷能器電能的儲存與 電路之研究...15 1.5.3 擷能器所產生電能應用之研究...16 1.5.4 正在快速發展中之擷能器...16 1.6 研究目的與方法...17 第二章 壓電能擷取系統 2.1 壓電能量擷取系統...19 2.2 壓電能量擷取系統模型...20 2.3 壓電能量擷取電路...21 2.4 壓電能量擷取器 應用現況...22 第三章 樑的結構動態分析與應變 3.1 四種不同邊界情況的樑振動分析...27 3.1.1 簡支樑...29 3.1.2 固定-簡支樑...30 3.1.3 固定

樑...31 3.1.4 懸臂樑...31 3.2 樑的潛在振動能擷取與轉換之關 鍵因素...36 第四章 壓電能量阻抗模型與能量分析 4.1 共軛複數阻抗匹配...37 4.2 不完全匹配與 完全匹配...37 4.3懸臂樑+MFC壓電元件的阻抗匹配分析...40 4.4 機電轉換因子對阻抗匹配能量轉 換影響之分 析...43 4.5 MFC 壓電元件原始電容對阻抗匹配能量轉換影 - ix - 響之分 析...44 第五章 結論與未來工作 5.1 結論...46 5.2 未 來工作...47 參考文獻...48

REFERENCES

參考文獻 [1] 楊育彰,“壓電噴射氣流器設計參數效能評估”,大葉大學碩 士論文,2004。

[2] www.nasa.gov [3] www.smart-material.com.

[4] ANSI/IEEE Standard 177﹐Standard Definitions and Methods of Measurement for Piezoelectric Vibrators﹐1966.

[5] ANSI/IEEE Standard 176-1987, Standard on Piezoelectricity﹐ 1988.

(2)

[6] Roundy, S., Leland, E. S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J. M., Wright, P. K. and Sundararajan, V. “Improving Power Output for Vibration-based Energy Scavengers”, journal of IEEE Pervasive Computer, Vol. 4, pp.28–36, 2005.

[7] Yaowen,Y., Lihua, T. and Yun, H. ,“Vibration Energy Harvesting Using Macro-fiber Composites”, Journal of Smart Material Structure , Vol.11, pp.5025-5032, 2009.

[8] Sodano, H .A., Inman, D. J. and Park, G. , “ Generation and Storage of Electricity from Power Harvesting Devices”, Journal of Intelligent Material Systems and Structures , Vol.16 , pp.67–75, 2005.

[9] Ottman, G. K., Hofmann, H., Bhatt, C. A. and Lesieutre, G. A., - 49 - “Adaptive Piezoelectric Energy Harvesting Circuit for Wireless, Remote Power Supply” , IEEE Transactions on Power Electronics, Vol. 17, No. 5, pp. 1-8, 2002.

[10] Umeda, M., Nakamura, K. and Ueha, S., “Energy Storage Characteristics of a Piezo-Generator Using Impact Induced Vibration ”, Japanese Journal of Applied Physics, Vol. 35, Part 1, No. 5B, pp. 3146-3151, 1997.

[11] Goldfarb, M. and Jones, L. D. , “On the efficiency of electric power generation with piezoelectric ceramic” ,Trans. ASME Journal of Dynamic System Measure Control , Vol.121, pp.566– 571, 1999.

[12] Roundy, S., “Effectiveness of Vibration-based Energy Harvesting”, Journal of Intelligent Material Systems and Structures , Vol.16, pp.809 –823, 2005.

[13] Richards, C. D., Anderson, M. J., Bahr, D. F. and Richards, R. F., “ Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component ”, Journal of Micromechanical and Microengineering, Vol.14 , pp.717–21, 2004.

[14] Shu,Y. C. and Lien, I .C. , “ Analysis of Power Output for Piezoelectric Energy Harvesting Systems ”, Journal of Smart Material Structure , Vol.15, pp.1499–1512, 2006.

[15] Cho, J., Anderson, M., Richards, R., Bahr, D. and Richards, C. , “Optimization of Electromechanical Coupling for a Thin-film PZT Membrane, I. Modeling”, Journal of Micromechanical and - 50 - Microengineering, Vol.15, pp.1797–1803, 2005.

[16] Cho, J., Anderson , M., Richards, R., Bahr, D. and Richards, C. , “ Optimization of Electromechanical Coupling for a Thin-film PZT Membrane, II. Experiment”, Journal of Micromechanical and Microengineering, Vol.15, pp. 1804–1809, 2005.

[17] duToit, N. E., Wardle, B. L. and Kim, S. G. , “ Design Considerations for MEMS-scale Piezoelectric Mechanical Vibration Energy Harvesters ”, Integrated Ferroelectr., Vol.71, pp.121–160, 2005.

[18] Roundy, S., Wight, P. K. , Rabaey, J. , “A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes” Computer Communications, Vol.26 , pp.1131-1144, 2003.

[19] Hausler, E. and Stien, E., “Implantable Physiological Power Supply with PVDF Film,” Ferroelectrics, Vol.60, pp. 277- 282. ,1984.

[20] Starner, T., “ Human-Powered Wearable Computing ” , Journal of IBM Systems, Vol. 35, pp.618-629, 1996.

[21] Kymissis, J., Kendall, D., Paradiso, J. and Gershenfeld, N., “ Parasitic Power Harvesting in Shoes ” , Second IEEE International Conference on Wearable Computing, August, pp. 132-336, 1998.

[22] Jeon , Y. B., Sood, R., Jeong, J. H. and Kim, S. G., “ MEMS Power Generator with Transverse Mode Thin Film PZT ”, Sensors Actuators A, Vol.122, pp.16–22, 2005. - 51 - [23] Sodano, H. A., Lloyd, J. and Inman, D. J. , “ An Experimental Comparison between Several Active Composite Actuators for Power Generation ”, Journal of Smart Material Structure , Vol.15 , pp.1211–1216, 2006.

[24] Shu, Y. C.and Lien, I. C. ,“ Efficiency of Energy Conversion for a Piezoelectric Power Harvesting System ”, Journal of Micromechanical and Microengineering , Vol .16 pp.2429- 2438, 2006.

[25] Tadesse, Y., Zhang, S. and Priya , S., “Multimodal Energy Harvesting System:Piezoelectric and Electromagnetic ” , Journal of Intelligent Material Systems and Structures , Vol.20, pp. 625-632, 2009.

[26] Brufau-Penella , J. and Puig-Vidal , M. , “Piezoelectric Energy Harvesting Improvement with Complex Conjugate Impedance Matching ”, Journal of Intelligent Material Systems and Structures , Vol.20, pp.597-608, 2009.

參考文獻

相關文件

• When a system undergoes any chemical or physical change, the accompanying change in internal energy, ΔE, is the sum of the heat added to or liberated from the system, q, and the

In this paper, we build a new class of neural networks based on the smoothing method for NCP introduced by Haddou and Maheux [18] using some family F of smoothing functions.

Huang, A nonmonotone smoothing-type algorithm for solv- ing a system of equalities and inequalities, Journal of Computational and Applied Mathematics, vol. Hao, A new

Stress and energy distribution in quark-anti-quark systems using gradient flow.. Ryosuke Yanagihara

Good Data Structure Needs Proper Accessing Algorithms: get, insert. rule of thumb for speed: often-get

2 System modeling and problem formulation 8 3 Adaptive Minimum Variance Control of T-S Fuzzy Model 12 3.1 Stability of Stochastic T-S Fuzzy

and Dagtekin, I., “Mixed convection in two-sided lid-driven differentially heated square cavity,” International Journal of Heat and Mass Transfer, Vol.47, 2004, pp. M.,

Imamura, “ Fuzzy Decision Analysis on the Development of Centralized Regional Energy Control System,” IFAC Symposium on Fuzzy Information, Knowledge Representation