• 沒有找到結果。

Studies on the Deacidification of Red Wine in Taiwan 林頌樺、陳鴻章

N/A
N/A
Protected

Academic year: 2022

Share "Studies on the Deacidification of Red Wine in Taiwan 林頌樺、陳鴻章"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

Studies on the Deacidification of Red Wine in Taiwan 林頌樺、陳鴻章

E-mail: 9511025@mail.dyu.edu.tw

ABSTRACT

Black Queen is the only grape variety for making red wine in Taiwan, but its high acidity, influenced by factors such as variety and planting environment, has resulted in the production of wine with biting mouthfeel and inferior quality. Different chemicals (calcium carbonate, potassium hydrogen carbonate, potassium bitartrate) and malolactic fermentation bacteria were used to deacidify the wine into a product with high quality, low acidity and mellow mouthfeel. Direct addition of calcium carbonate, potassium hydrogen carbonate and potassium bitartrate to the various stages of winemaking to neutralize the organic acids in the wine can achieve the deacidification effect. A dosage of 2.01 g/L of calcium carbonate or 2.55 g/L of potassium hydrogen carbonate gave the best deacidification effect when chemical deacidificants were exploited. The red wine deacidified with 2.55 g/L of potassium hydrogen carbonate was most acceptable in the sensory test. The malic acid in the red wine couldn’t be completely converted to lactic acid during malolactic bacteria fermentation. In practice, only one-third of malic acid was converted. The optimum conditions for malolactic fermentation included an inoculum of 5%, fermentation temperature of 20℃, and addition of 0.2 g/L of malolactic nutrients. The commercial multiple strain product, Biolact AcclimateeR was a batter source of malolactic bacteria than single strain Oenococcus oeni BCRC 16064 in deacidifying red wine. In the experiments combining the chemical deacidificants and malolactic bacteria to deacidify red wine, two commercial malolactic bacteria products, Biolact AcclimateeR and Lalvin X-3R have similar effect. Both deacidified red wine to a total acidity content of 0.85 g/100mL, and had highest scores of taste and overall preference with significant difference. In conclusion, treatment with chemical deacidificants combined with malolactic bacteria have the best deacidifiction effect on red wine and resulted in improved acceptability of the wine. The deacidified red wine was even more acceptable after 3 months of storage.

Keywords : Red Wine ; Malolacic Fermentaion ; Calcium Carbonate ; Potassium Hydrogen Carbonate ; Potassium Bitartrate ; Deacidification

Table of Contents

授權書 iii 中文摘要 iv 英文摘要 vi 誌謝 viii 目錄 ix 圖目錄 xii 表目錄 xvi 第一章 前言 1 第二章 文獻回顧 3 一 葡萄原料 3 (一

)葡萄品種 3 (二)氣候與土壤 3 (三)葡萄的成熟度 4 (四)葡萄的採收 5 (五)葡萄酒的成分 6 二 葡萄的處理 9 (一)除梗

、破碎 9 (二)果膠分解酵素 9 三 酒精發酵 10 (一)酵母菌 10 (二)酵母的營養需求 10 (三)發酵的生化作用 11 (四)發酵 溫度 11 (五)酒的風味物質 12 四 蘋果酸乳酸發酵 20 五 葡萄酒的降酸方法 20 (一)物理降酸法 20 (二)化學降酸法 22 (三

)微生物降酸法 23 第三章 材料與方法 58 一 實驗材料 58 二 實驗步驟 63 三 分析方法 69 第四章 結果與討論 79 一 葡萄原 料 79 (一)果汁成分 79 (二)紅葡萄酒成分 82 二 化學降酸劑作用條件之探討 84 (一)碳酸鈣用量之影響 84 (二)碳酸氫鉀 用量之影響 88 (三)酒石酸鉀用量之影響 95 三 蘋果酸乳酸菌降酸作用條件之探討 101 (一)乳酸菌種類之影響 101 (二)接 菌量之影響 103 (三)發酵溫度之影響 109 (四)營養素用量之影響 119 四 化學降酸劑配合蘋果酸乳酸菌發酵降酸之探討 125 五 熟陳時間對酒質影響之探討 134 (一)以碳酸鈣、碳酸氫鉀或酒石酸鉀最適用量降酸後之葡萄酒於熟陳中之變化 134 (二)以蘋果酸乳酸發酵最適條件降酸後之葡萄酒於熟陳中之變化 138 第五章 結論 142 參考文獻 144 圖 目 錄 頁次 圖2-1酵 母菌發酵期間主要的有機酸生成途徑 13 圖2-2 Schizosaccharomyces pombe中的蘋果酸路徑 25 圖2-3蘋果酸乳酸發酵期間主 要的乳酸及?系生成途徑 29 圖2-4在CDW培養液中O. oeni Lalvin EQ54菌種與有無添加glycosides組合之蘋果酸的降解與細菌 數的生長情況 36 圖2-5在CDW培養液中O. oeni Lalvin EQ54菌種配合添加glycosides在MLF最後再補充glycosides,其殘餘 的Glycosyl-glucose情況 37 圖2-6 O. oeni在不同的pH值與溫度中β-Glucosidase的活性 39 圖2-7在發酵期間不同濃度的二氧化 硫對酵母菌及蘋果酸消耗的影響 42 圖2-8以FT80培養基培養Oenococcus oeni ,在pH3.5下有不同二氧化硫存在的影響 43 圖2-9在30℃酒石酸緩衝液中S. bayanus Premiere Cuvee休眠細胞S. bayanus Premiere Cuvee 與 O. oeni Lo111休眠細胞混合對 於乙醛降解之比較 50 圖2-10由Oenococcus oeni分解檸檬酸的代謝途徑 53 圖2-11由57種澳洲紅酒中檢測雙乙醯的含量 55 圖2-12 Chardonnay酒在儲存時間對於不同二氧化硫與雙乙醯含量的影響 56 圖3-1釀造紅葡萄酒降酸之實驗架構酒精沸點儀 64 圖3-2酒精沸點儀 71 圖3-3測定二氧化硫裝置 74 圖4-1以不同碳酸鈣使用量製作黑后紅葡萄酒時之酒精度、可溶性固形物 及比重變化不同碳酸鈣使用量對黑后紅葡萄酒之pH值及可滴定酸之影響 86 圖4-2不同碳酸鈣使用量對黑后紅葡萄酒之pH 值及可滴定酸之影響 87 圖4-3以不同碳酸鈣使用量製作黑后紅葡萄酒時之總酚、總色素及色度比(A420/A 520)變化 89 圖4-4以不同碳酸氫鉀處理黑后紅葡萄酒前之酒精度、可溶性固形物及比重變化 92 圖4-5以不同碳酸氫鉀使用量對黑后紅葡

(2)

萄酒之pH值及可滴定酸之影響 93 圖4-6以不同碳酸氫鉀使用量製作黑后紅葡萄酒時之總酚、總色素及色度比(A420/A520

)變化 94 圖4-7以不同酒石酸鉀使用量製作黑后紅葡萄酒之酒精度、可溶性固形物及比重變化 98 圖4-8不同酒石酸鉀使用 量對黑后紅葡萄酒pH值及可滴定酸之影響 99 圖4-9以不同酒石酸鉀使用量製作黑后紅葡萄酒時之總酚、總色素及色度比

(A420/A 520)變化 100 圖4-10紅葡萄酒型蘋果酸乳酸發酵前後之有機酸層析圖 104 圖4-11黑后紅葡萄酒中接種不同乳酸 菌進行蘋果酸乳酸發酵期間之pH值及可滴定酸的變化 105 圖4-12黑后紅葡萄酒中接種Oenococcus Oeni BCRC 16064乳酸菌 進行蘋果酸乳酸發酵期間之蘋果酸與乳酸含量的變化 106 圖4-13黑后紅葡萄酒中接種Biolact AcclimateeR乳酸菌進行蘋果酸 乳酸發酵期間之蘋果酸與乳酸含量的變化 107 圖4-14黑后紅葡萄酒中接種不同乳酸菌進行蘋果酸乳酸發酵期間之總酚、總 色素及色度比(A420/A 520)變化 108 圖4-15黑后紅葡萄酒中接種不同菌量Biolact AcclimateeR乳酸菌進行蘋果酸乳酸發酵 期間之pH值及可滴定酸的變化 110 圖4-16黑后紅葡萄酒中接種不同菌量Biolact AcclimateeR乳酸菌進行蘋果酸乳酸發酵期 間之蘋果酸及乳酸含量的變化 111 圖4-17黑后紅葡萄酒中接種不同菌量Biolact AcclimateeR乳酸菌進行蘋果酸乳酸發酵期間 之總酚、總色素及色度比(A420/A 520)變化 112 圖4-18黑后紅葡萄酒於不同溫度下O. oeni BCRC 16064進行蘋果酸乳酸 發酵期間pH值及可滴定酸的變化 115 圖4-19黑后紅葡萄酒於不同溫度下O. oeni進行蘋果酸乳酸發酵期間蘋果酸及乳酸變化 116 圖4-20 Bobal紅葡萄酒於不同溫度下以Biolact AcclimateeR進行蘋果酸乳酸發酵期間pH值及可滴定酸的變化 117 圖4-21 Bobal紅葡萄酒於不同溫度下以Biolact AcclimateeR進行蘋果酸乳酸發酵期間蘋果酸及乳酸的變化 118 圖4-22黑后紅葡萄酒 於不同溫度下以O. oeni BCRC 16064進行蘋果酸乳酸發酵期間總酚、總色素及色度比(A420/A 520)變化 120 圖4-23黑后 紅葡萄酒中添加不同量營養素以Biolact AcclimateeR進行蘋果酸乳酸發酵期間pH值及可滴定酸的變化 122 圖4-24黑后紅葡 萄酒中添加不同量營養素以Biolact AcclimateeR進行蘋果酸乳酸發酵期間蘋果酸及乳酸的變化 123 圖4-25黑后紅葡萄酒中添 加不同量營養素以Biolact AcclimateeR 進行蘋果酸乳酸發酵期間總酚、總色素及色度比(A420/A 520)變化 124 圖4-26 Bobal紅葡萄酒中添加不同化學降酸劑與利用蘋果酸乳酸菌進行發酵降酸期間pH值的變化 127 圖4-27 Bobal紅葡萄酒中添加 不同化學降酸劑與利用蘋果酸乳酸菌進行發酵降酸期間可滴定酸的變化 128 圖4-28 Bobal紅葡萄酒中添加不同化學降酸劑 與利用Biolact AcclimateeR進行蘋果酸乳酸發酵降酸期間蘋果酸與乳酸的變化 130 圖4-29 Bobal紅葡萄酒中添加不同化學降 酸劑與利用Lalvin X-3R進行蘋果酸乳酸發酵降酸期間蘋果酸與乳酸的變化 131 表 目 錄 頁次 表2-1理想的釀酒葡萄品質 7 表2-2葡萄酒之主要成分 8 表2-3脂肪酸在酒中的風味特徵及閾值 14 表2-4醇在酒中的風味特徵及閾值 16 表2-5酯類在酒中的 風味特徵及閾值 17 表2-6酒類中之多元酚 18 表2-7添加不同劑量碳酸氫鉀於葡萄酒中的處理 24 表2-8酵母細胞生長於葡萄 糖-酵母抽出物培養液中分解蘋果酸和酒石酸 27 表2-9由葡萄酒中發現的乳酸菌 31 表2-10發酵葡萄酒醪中的各種乳酸菌數 33 表2-11蘋果酸乳酸發酵數據:由生長菌數評估有機酸的含量 34 表2-12環境因子對O. oeni CECT4100之ATP酵素活性影 響 46 表2-13幾株L. oenos在pH 4.5的磷酸緩衝液中對於酚酸及花青素的影響 47 表2-14在30℃酒石酸緩衝液中乳酸菌休眠細 胞對於乙醛的降解與乙醇的生成情況 48 表2-15不同葡萄酒中的乙醛含量 51 表4-1 黑后葡萄果汁物化性質分析 80 表4-2 Bobal葡萄果汁物化性質分析 81 表4-3黑后葡萄新酒物化性質分析 83 表4-4以添加不同碳酸鈣含量釀造黑后紅葡萄酒之品評 結果 90 表4-5以添加不同碳酸氫鉀含量釀造黑后紅葡萄酒之品評結果 96 表4-6以添加不同酒石酸鉀含量釀造黑后葡萄酒之 品評結果 102 表4-7黑后紅葡萄酒於不同接菌量下進行Biolact AcclimateeR蘋果酸乳酸發酵之品評結果理 113 表4-8黑后紅葡 萄酒於不同溫度下以O. oeni BCRC 16064進行蘋果酸乳酸發酵後之品評結果 121 表4-9黑后紅葡萄酒添加不同劑量營養素下 以Biolact AcclimateeR進行蘋果酸乳酸發酵後之品評結果 126 表4-10 Bobal紅葡萄酒經化學降酸劑、蘋果酸乳酸菌降酸及冷 安定處理後之物化性質分析 132 表4-11 Bobal紅葡萄酒經化學降酸劑、蘋果酸乳酸菌降酸及冷安定處理後之品評結果 133 表4-12黑后紅葡萄酒經最適量之各種化學降酸劑降酸及冷安定處理後之物化性質分析 135 表4-13黑后紅葡萄酒以最適量之 各種化學降酸劑降酸及冷安定處理後經熟陳三個月之物化性質分析 136 表4-14黑后紅葡萄酒經最適量之各種化學降酸劑降 酸及冷安定處理後熟陳三個月之品評結果 137 表4-15黑后紅葡萄酒經蘋果酸乳酸菌降酸及冷安定處理後之物化性質分析 139 表4-16黑后紅葡萄酒經蘋果酸乳酸菌降酸及冷安定處理後熟陳三個月之物化性質分析 140 表4-17黑后紅葡萄酒經蘋果 酸乳酸發酵最適條件降酸及冷安定處理後熟陳三個月之品評結果 141

REFERENCES

中文部份 1. 冉亦文、闕信玉。1980。葡萄酒釀製技術之改進研究。酒類試驗所研究年報69年度。p71-79。 2. 冉亦文。1985。釀酒葡萄 的栽培、成熟與採收。製酒科技專論彙編。7:28-37。 3. 冉亦文。1987。加州品種餐用白葡萄酒釀製技術探討。製酒科技專論彙編

。9:117-130。 4. 李福臨。2000。乳酸菌分類之研究近況。科學與技術。32(8):36-42。 5. 林耕年。1988。釀造學(全)。復文書局。

台南市。 6. 林錦淡。1980。酵母菌對酒類芳香化合物的生成之影響。製酒科技專論彙編。2:86-93。 7. 林讚峰、黃村能。1998。由全球 及亞洲葡萄酒市場概況探討台灣地區葡萄酒市場之發展。20:79-85。 8. 林讚峰。1998。葡萄酒的保健與醫療功效。製酒科技專論彙編

。20:172-181。 9. 姜錫瑞,段鋼。新編?製劑實用技術手冊。中國輕工業出版社。北京。P.53-54。 10. 胡曉茹。2004。蘋果酸乳酸發酵降 低黑后紅葡萄酒酸度之研究。私立輔仁大學食品營養學系研究所碩士論文。台北縣。 11. 倪德全。酵母菌的有機酸生成及利用。製酒科 技專論彙編。4:78-91。 12. 徐涵明、冉亦文。1985。葡萄酒微生物減酸試驗。製酒科技專論彙編 4:78-91。 13. 高年發。2005。葡萄酒生 產技術。化學工業出版社。北京。 P71-93。 14. 張世界。2003。色素抽出方法暨發酵醪果膠分解酵素前處理對於紅葡萄酒製造之影響 。 國立中興大學食品科學研究所碩士論文。台中。 15. 張粲如。1977。黑后葡萄花青素之研究。中國園藝。23(1):32-38。 16. 張嘉珮

。2001。金香葡萄釀製雪莉酒之研究。私立輔仁大學食品營養學系研究所碩士論文。台北縣。 17. 許振耀。1982。食品添加物使用法。

(3)

華香園出版社。台北市。p63-64。 18. 許媗昭、王婉鶯、楊淑琴、廖完。1990。葡萄酒製程之改進研究(一)。酒廠研究年報79年度

。p77-73。 19. 彭德華。2005。葡萄酒釀造技術文集。中國輕工業出版社。北京。p28-191。 20. 黃村能。1997。釀酒葡萄品種。製酒科 技專論彙編。19:130-144。 21. 黃村能。1998。紅葡萄酒的調和。製酒科技專論彙編。20:51-57。 22. 黃癸林。1981。葡萄酒生產最近之 研究成果與研究中之問題。製酒科技專論彙編3:27-36。 23. 黃癸林。1994a。法國的葡萄酒研究。製酒科技專論彙編 16:263-290。 24. 黃 婉清。2001。乳酸菌對葡萄酒品質的增益與減損。食品工業33(3):21-38。 25. 黃淑媛。1988。葡萄酒pH值與酸度之關係。製酒科技專 論彙編 10:201-204。 26. 黃淑媛。1994b。酒類色香味的形成與品嚐。製酒科技專論彙編。16:291-298。 27. 趙光鰲、卓容、張繼民、楊 明。葡萄酒釀造學-原理及應用。中國輕工業出版社。 28. 廖啟成。1998。乳酸菌之分類及應用。食品工業月刊。30(2):1-10。 29. 歐 陽港生。1991。中國傳統蒸餾酒的色香味及品評。製酒科技專論彙編。13:67-78。 30. 蔡珊珊、許媗昭、孫哲甫。1981。葡萄酒中蘋果 酸乳酸發酵之研究。酒類試驗所研究年報70年度。p173-186。 31. 蔡珮新。2001。黑后葡萄酒製備之研究。國立台灣大學農業化學研究 所碩士論文。台北。 32. 賴滋漢和金安兒。1991。食品加工(製品篇)。精華出版社。p318-320。 33. 魏運平和趙光鰲。2003。葡萄酒 釀造中乙醛的形成及其重要作用。釀酒科技。116:77-78。 34. 權英、王頡、張偉。2002。葡萄酒中的乳酸菌。釀酒科技。110:59-61。 英 文部份 1. Alegria, E. G., Lopez, I., Ruiz, J. I., Saenz, J., Fernandez, E., Zarazaga, M., Dizy, M., Torres, C., and Larrea, F. R. 2004. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and erhanol. FEMS Microbiology. Letters. 230:53-61. 2. Alexandre, H., Costello, P. J., Remize, F., Guzzo, J., and Guilloux-Benatier, M. 2004.

Saccharomyces cervisiae-Oenococcus oeni interactions in wine:current knowledge and perspectives.International Journal of Food Microbiology.

93:141-154. 3. Amerine, M. A., Berg, H. W., Kunkee, R. E., Ough, C. S., Singleton, V. L., and Webb, A. D. 1980. The Technology of Wine Making. 4th ed. Connecticut:AVI. 4. Amerine, M. A., and Ough, C. S. 1980. Methods for Anylasis of Musts and Wines. A Wiley-Interscience Publication, John Wiley & Sons. New York. 5. Barbagallo, R. N., Spagna, G., Palmeri, R., Torriani, S. 2004. Assessment of β-glucosidase activity in selected wild strains of Oenococcus oeni for malolactic fermentation. Enzyme and Microbial Technology. 34:292-296. 6. Bartowsky, E. J., and Henschke, P. A. 2004. The ‘buttery’ attribute of wine-diacetyl-desirability, spoilage and beyond. Int. J. Food Microb. 96:235-252. 7.

Beelman, R. B., and Gallander, J. F. 1979. Wine deacidification. Adv. Food. Res. 25:1-44. 8. Bony, M., Bidart, F., Camarasa, C., Ansanay, V., Dulau, L., Barre, P., and Dequin, S. 1997. Metabolic analysis of S. cerevisiae strain engineered for malolactic fermentation. FEMS Microbiology Letters.410:452-456. 9. Boulton, R. B., Singleton, V. L., Bisson, L. F., and Kundee, R. E. 1966. Principles and practices of winemaking. Chapman

& Hall, New York. 10. Cameira dos Santos, P., Gon calves, F., and De Pinho, M. N. 2002. Optimisation of the method for determination of the temperature of saturation in wines. Analytica Chimica Acta. 458:257-261. 11. Coombe, B. G. Dundon, R. J., and Short, A. W. S. 1980. Indices of sugar-acidity as ripeness criteria for winegrapes. J. Sci. Food Agric. 31:495-502. 12. D’Incecco, N., Bartowsky, E., Kassara, S., Lante, A., Spettoli, P., and Henschke, P. 2004. Release of glycosidically bound flavour compounds of chardonnay by Oenococcus oeni during malolactic fermentation.

Food Microbiology. 21:257-265. 13. Davis, C. R., Wibowo, D. J., Lee, T. H., and Fleet, G. H. 1986. Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Apple Environ Microbiology. 51:539-545. 14. Davis, C. R., Wibowo, D., Eschenbruch, R., Lee, T. H., and Fleet, G. H. 1985. Practical implications of malolactic fermentation:a review. Am. J. Enol. VItic. 36:290-301. 15.

Dicks, L. M. T., Dellaglio, F., and Collins, M. D. 1995. Proposal to reclassify Leuconostoc oenos as Oenococcus oeni(corrig.)gen nov., comb.

Nov. Int. J Syst Bacteriol. 45:395-397. 16. Edwards, C. G., and Beelman, R. B., 1987. Inhibition of the malolactic bacterium Leuconostoc oenos

(PSU-1)by decanoic acid and subsequent removal of the inhibition by yeast ghosts. American Journal of Enology and Viticulture. 38:239-242.

17. Fang, T. J., and Dalmasso, J. P. 1993. Characterization of Leuconostoc oenos isolated from acidic wine and evaluation of their plasmid profiles.

J. chin. Agr. Chem. Soc. 31(1):1-17. 18. Gao, C., and Fleet, H. 1995. Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts. Food Microbiology. 12:65-71. 19. Gomez Benitez, J., Palacios Macias, V. M., Veas Lopez, R., Valcarcel Mu?oz, M., and Perez Rodriguez, L. 2004. Characterization, control and improvement of the cold tratement of Sherry wines. Food control. 15:111-116. 20. Goncalves, F., Fernandes, C., Cameira dos Santos, P., and De Pinho, M. N. 2003. Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature. Journal of Food Engineering. 59:229-235. 21. Guzzo, J., Coucheney, F., Pierre, F., Fortier, L. C., Delmas, F., Divies, C., and Tourdot-Marechal, R. 2002. Acidophilic behaviour of the malolactic bacterium Oenococcus oeni. Sci. Aliments. 22:107-111. 22. Guzzo, J., Jobin, M. P., and Divies, C. 1998. Increase of sulfite tolerance in Oenococcus oeni by means of acidic adaptation. FEMS Microbiology Letters.

160:43-47. 23. Lafon-Lafourcade, S. 1983. Wine and brandy. In:Rehm, H-J, Reed G. ed. Biotechnology. (V):Food and feed production with microorganisms. Verlag Chemie. Weinheim Germany. p81-163. 24. Lea, A. G. H., and Piggott, J. R. 1995. Fermented Beverage Production.

London:Blackie Academic and Professional. 25. Lonvaud-Funel, A. 1995. Microbiology of the malolactic fermentation:Molecular aspects. FEMS Microbiology Letters. 126:209-214. 26. Lonvaud-Funel, A., Joyeux, A., and Dessens, C., 1988. Inhibition of malolactic fermentation of wines by products of yeast metabolism. Journal of the Science of Food and Agriculture. 44:183-191. 27. Lonvaud-Funel, A., Joyeux, A., and Ledoux, O.

1991. Specific enumeration of lactic acid bacteria in fermenting grape must and wine by colony hybridization with non-isotopic DNA probes. J.

Appl. Bacteriol. 71:501-508. 28. Maicas, S., Gil, J.-V., Pardo, I., and Ferrer, S. 1999. Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Res. Int. 32:491-496. 29. Martineau, B., Acree, T. A., and Henick-Kling, T. 1995. Effect of wine type on the detection threshold for diacetyl. Food Res. Int. 28(2):139-143。 30. Nielsen, C. J., and Richelieu, M. 1999. Control of flavor development in wine during and after malolactic fermentation by Oenococcus oeni. Appl Envir. Microb.65(2):740-745. 31. Osborne, J. P., Mira de Orduna, R., Pilone, G. J., and Liu, S. Q. 2000. Acetaldehyde metabolism by wine lactic acid bacteria. FEMS Microbiology Letters. 191:51-55. 32. Pascal, D., Margaret, C., Marjorie, K., Benoit, G., and John, H. 2000. Effect of two commercial malolactic cultures on the chemical and sensory properties of

(4)

chancellor wines vinified with different yeasts and fermentation temperatures. Am. J. Enol. Vitic. 51(1):42-48. 33. Patrizia, R., Giovanna, S., Luca, T., and Mario, P. 1994. Acetaldehyde production in saccharomyces cervisiae wine yeast. FEMS Micro. Letters 118(3):213-218. 34. Perez, L., Valcarcel, M. J., Gonzalez, P., and Domecq, B. 1991. Influence of Botraytis infection of the grapes on the biological aging process of fine sherry.

Am. J. Enol. Vitic. 42(1):58-62. 35. Redzepovic, S., Orlic, S., Majdak, A., Kozina, B., Volachenk, H., and Viljoen-Bloom, M. 2003. Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int. J. of Food Microbiology. 83:49-61. 36. Reguant, C., Carrete, R., Constanti, M., and Bordons, A. 2005. Population dynamics of Oenococcus oeni strains in a new winery and the effect of SO2 and yeast strain. FEMS Microbiology Letters. 246:111-117. 37. Rose, A. H. 1977. Scientific basis of alcoholic beverage production. In:Economic Microbiology. Vol. 1. London:Academic Press. p.10-40. 38. Rosini, G., and Ciani, M. 1993. Influence of sugar type and level on malate

metabolism of immobilized Schizosaccharomyces pombe cell. Am. J. Enol. Vitic. 44:113-117. 39. Ruffner, H. P. 1982. Metabolism of tartaric and malic acids in Vitis:A review Part A. Vitis. 21:247-259. 40. Sousa, R. Y., Ingraham, J. L., Wheelis, M. L., and Painter, P. R. 1992. General Microbiology. 5th edition. Macmillan Education Lod. Hong Kong. P658-659. 41. Subden, R. E., Krizus ,A., Osothsilp, C., Viljoen, M., and Van Vuuren, H. J. J. 1998. Mutational analysis of malate pathways in Schizosaccharomyces pome. Food Res. Int. 31(1):37-42. 42. Taillandier, P., and Strehaiano, P. 1991. The role of malic acid in the metabiolism of Schizosaccharomyces pombe:substrate consumption and cell growth. Apple Microbiol Biotechnol. 35:541-543. 43. Taillandier, P., Gilis, M., and Strehaiano, P. 1995. Deacidification by Schizaccharomyces:interactions with Saccharomyces. J. Biotechnol. 40:199-205. 44. Thornton, R. J., and Rodriguez, S. B. 1996. Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevorans under commercial winemaking conditions. Food Microbiology. 13:475-482. 45. Vivas, N., Lonvaud-Funel, A., and Glories, Y. 1997. Effect of phenolic acids and anthocyanins on growth, viability and malolactic activity of a lactic acid bacterium. Food Microbiology. 14:291-300. 46. Vuorinen, H., Maatta, K., and Torronen, R., 2000. Content of flavonols myricetin, quercetin, and kaempferol in Finnish berry wines. J. Agric Food Chem. 48:2675-2680.

參考文獻

相關文件

(c) If the minimum energy required to ionize a hydrogen atom in the ground state is E, express the minimum momentum p of a photon for ionizing such a hydrogen atom in terms of E

4634 potassium hydrogen fluoride 氟化氫鉀,氫氟化鉀. 4635 potassium

To explore different e-learning resources and strategies that can be used to successfully develop the language skills of students with special educational needs in the

Explore different e-learning resources and strategies that can be used to successfully develop the language skills of students with special educational needs in the..

The min-max and the max-min k-split problem are defined similarly except that the objectives are to minimize the maximum subgraph, and to maximize the minimum subgraph respectively..

The quantity of landscape planting in campus was evaluated and used as an indicator to divide the campus into different landscape zones where the air anions

In order to partition the GPS market into different segments, this paper used purchase motives, product attributes and consumer lifestyle as the variables for market

The main goal of this research is to identify the characteristics of hyperkalemia ECG by studying the effects of potassium concentrations in blood on the