• 沒有找到結果。

The Synthesis of Carbon Nanotubes on Silicon Nanowires by Thermal Chemical Vapor Deposition 李世凱、李世鴻

N/A
N/A
Protected

Academic year: 2022

Share "The Synthesis of Carbon Nanotubes on Silicon Nanowires by Thermal Chemical Vapor Deposition 李世凱、李世鴻"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

The Synthesis of Carbon Nanotubes on Silicon Nanowires by Thermal Chemical Vapor Deposition

李世凱、李世鴻

E-mail: 9806477@mail.dyu.edu.tw

ABSTRACT

In this work, thermal chemical vapor deposition was utilized to grow carbon nanotubes (CNTs) on Si nanowires. CH4 was the main source for carbon, and argon was used as the carrier gas. CNTs were synthesized from carbon atoms obtained from catalytic thermal decomposition of silane. In this research, we study the effect of catalyst metal thickness and deposition temperature and different catalyst on structural properties and field emission characteristics of carbon nanotubes (CNTs) which were synthesized by thermal chemical vapor deposition of methane.

Raman spectroscopy and SEM、TEM、EDS were employed to study structural properties of CNTs, whereas field-emission characteristics of CNTs were measured in high vacuum. From SEM and Raman spectroscopic studies, it is found that as catalyst nickel thickness gets thicker, the size of nickel balls formed in the nucleation period gets larger. Hence, the number of CNTs gets smaller, and the diameters of synthesized CNTs get larger. It is suspected that the supplied thermal energy at low temperatures is not high enough to activate catalytic reaction to synthesize CNTs. At high temperatures, thermal energy supplied has already cross the threshold for nucleation, and the diameter of CNT reach a saturation value.

From Fowler-Nordheim tunneling analysis, it was found that the increase in nickel thickness indeed increases the work function of CNT. Hence, we arrive at the conclusion that the decrease in the number of CNT, the decrease in the field enhancement factor, and the increase in the work function of CNT are three main factors that causes the decrease in the field emission current for larger nickel metal thickness. It is found that this change in field emission current is caused not only by the change in number and diameter of CNTs, but also by the change in crystalline structure and work function of CNTs. The increase in the work function of CNTs make it difficult for electrons to emit from CNTs which can play an important role in the emission current.

Keywords : carbon nanotubes (CNTs)、field emission、thermal chemical vapor deposition (thermal CVD)、silicon nanowires Table of Contents

封面內頁 簽名頁

授權書.........................iii 中文摘要........................iv 英文摘要........................vi 誌謝..........................viii 目錄..........................x 圖目錄.........................xiii 表目錄.........................xvii

第一章 序論.......................1 1.1 奈米碳管的歷史與簡介...............2 1.2 奈米碳管的結構.................6 1.3 奈米碳管的應用價值................9 第二章 文獻回顧....................12 2.1使用化學氣相沉積讓奈米碳管成長在矽奈米絲上....12 2.2實驗動機.....................14 第三章 理論與研究方法.................15 3.1 電子場發射理論..................15 3.1.1奈米碳管作為場發射電子源.............20 3.1.2 應用在場發射平面顯示器............23 3.2 奈米碳管的成長機制................26

(2)

3.2.1 奈米碳管主要成長機制............26 3.2.2催化劑在奈米碳管成長中扮演的角色......27 3.2.3 奈米碳管成長模式分類............30 3.3 奈米碳管的製程方法...............34 3.4 實驗裝置與分析儀器................45 3.4.1 蒸鍍系統 與Thermal-CVD...........45 3.4.2 SEM和EDS及拉曼光譜量測與電性量測..... 49 3.4.3高解析穿透式電子顯微鏡 ........... 56 3.5 實驗方法與步驟..................57 3.5.1 蒸鍍系統與Thermal-CVD........... 57 3.5.2 電性量測................... 60 第四章 實驗結果與討論.................61

4.1矽奈米絲上蒸鍍不同催化劑厚度成長奈米碳管的研究與討論........................62 4.1.1 SEM(掃瞄式電子顯微鏡)的分析........ 62

4.1.2 EDS(能量散佈分析儀)的分析.........68 4.1.3 Raman(拉曼光譜)的分析....... ....69 4.1.4 電子場發射的分析..............71 4.2在矽奈米絲上改變不同成長溫度成長奈米碳管的研究與討 論........................76 4.2.1 SEM(掃瞄式電子顯微鏡)的分析........76 4.2.2 EDS(能量散佈分析儀)的分析.........85 4.2.3 Raman(拉曼光譜)的分析....... ....86 4.2.4 電子場發射的分析.............. 88

4.3 在矽奈米絲成長奈米碳管與在平面基材上成長奈米碳管比較........................92 4.3.1 SEM(掃瞄式電子顯微鏡)的分析........92

4.3.2 EDS(能量散佈分析儀)的分析.......... 94 4.3.3 Raman(拉曼光譜)的分析...........95 4.3.4 電子場發射的分析..............96 4.3.5 TEM(穿透式顯微鏡)分析...........97 第五章 結論......................98 參考文獻.........................100 REFERENCES

1.Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 7, 56-58.2. Radushkevich, L. V., & Lukyanovic, V. M. (1952). Effect of high-temperature coke deposition from methane upon the structure of manganese-yttium oxides. Carbon, Zh. Fiz. Khim. 26 (1952), p. 883.Hofer, L. J. E., Sterling, E., & MacCartney, J. T. (1955). Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes. J. Phys. Chem., 59, 6210.4.Kroto, H. W., Heath, J. R., O’Brian, S. C., Curl, R. F., & Smalley, R. E. (1985).

C60: Buckminsterfullerene. Nature, 318(6042), 162-163.5.Kratschmer, W., Lamb, L. D., Fostiropoulos, K., & Huffman, D. R. (1990). Solid C60: A new form of carbon. Nature, 347, 354-358.6.Maiti, Brabec, C. J., Roland, C., & Bernholc, J. (1995). Theory of carbon nanotube growth. Phys.

Rev. B, 15; 52(20), 14850-14858.7.Kusunoki, M., Rokkaku, M., & Suzuki, T. (1997). Epitaxial carbon nanotube film self-organized by sublimation decomposition of silicon carbide. Appl. Phys. Lett., 71(18), 2620-2622.8.Zhang, Y., Gu, H., & Iijima, S. (1998). Single-wall carbon nanotubes synthesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett., 73(26), 3827-3829.9.Ebbesen, T. W. (1997). Carbon Nanotubes:

Preparation and Properties. CRC Press, Boca Raton, 139-162.10.Iijima, S., & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603-605.11.Bethune, D. S., Kiang, C. H., deVries, M. S., Gorman, G., Saroy, R., Vazguez, J., & Beyers, R. (1993).

Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 363, 605-607.12.Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fischer, J. E., & Smalley, R. E.

(1996). Crystalline ropes of metallic carbon nanotubes. Science, 273, 483-487.13.Peter J. F. Harris, (1999). Carbon Nanotubes and Related Structure. Cambridge University Press, Chapter 4.2: Electronic properties of nanotube. 16–54.14.Charlier, J. C., & Issi, J. P. (1998). Electronic structure and quantum transport in carbon nanotubes. Appl. Phys. A: Mater. Sci. Process., 67, 79-87.15.Mintmire, J. W. & White, C. T. (1998).

First-principles band structures of armchair nanotubes. Appl. Phys. A: Mater. Sci. Process., 67, 65-69.16.Dresselhaus, M. S., Dresselhaus, G., &

Saito, R. (1995). Physics of carbon nanotubes. Carbon, 33, 883-891.17.Zhang, Y. F., Tang, Y. H., Zhang, Y., Lee, C. S., Bello, I., Lee, S. T. (2000).

(3)

Deposition of carbon nanotubes on Si nanowires by chemical vapor deposition. Chem. Phys. Lett., 330, 48-52.18.Jo, S. H., Tu, Y., Huang, Z. P., Carnahan, D. L., Wang, D. Z., & Ren, Z. F. (2003). Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties.

Appl. Phys. Lett., 82, 3520-3522.19.Wang, Z. L., R. P. Gao, W. A. deHeer, P. Poncharal, (2002). In situ imaging of field emission from individual carbon nanotubes and their structural damage. Appl. Phys. Lett., 80, 856-858.20.Bonard, J. M., Dean, K. A., Coll, B. F., & Klinke, C. (2002). Field emission of individual carbon nanotubes in the scanning electron microscope. Phys. Rev. Lett., 89(19), 1976021-24.21.Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., & Smalley, R. E. (1995). Unraveling nanotubes: field emission from an atomic wire. Science, 269, 1550-1553.22.DeHeer, W. A., Chatelain, A., & Ugarte, D. (1995). A carbon nanotube field-emission electron source. Science, 270, 1179-1180.23.Shyu, Y. M., & Hong, F. C. N. (2001). Low-temperature growth and field emission of aligned carbon

nanotubes by chemical vapor deposition. Mater. Chem. Phys., 72(2), 223-227.24.Wang, Y. H., Lin, J., & Huan, C. H. A. (2002). Macroscopic field emission properties of aligned carbon nanotubes array and randomly oriented carbon nanotubes layer. Thin Solid Films, 405(1-2),

243-247.25.Bonard, J., Salvetat, J., Stockli, T., de Heer, W. A., Forro, L., & Chatelain, A. (1998). Field emission from single-wall carbon nanotube films. Appl. Phys. Lett., 73(7), 918-920.26.Wang, Q. H., Corrigan, T. D., Dai, J. Y., & Chang, R. P. H. (1997). Field emission from nanotube bundle emitters at low fields. Appl. Phys. Lett., 70(24), 3308-3310.27.Sung, S. L., Tsai, S. H., Tseng, C. H., Chiang, F. K., Liu, X. W., & Shih, H.

C. (1999). Well-aligned carbon nanotubes synthesized in anodic alumina by electron cyclotron resonance chemical vapor deposition. Appl. Phys.

Lett., 74(2), 197-199.28.Saito, Y., & Uemura, S. (2000). Field emission from carbon nanotubes and its application to electron sources. Carbon, 38(2), 169-182.29.Yumura, M., Ohshima, S., Uchida, K., Tasaka, Y., Kuriki, Y., Ikazaki, F., Saito, Y., & Uemura, S. (1999). Synthesis and purification of multi-walled carbon nanotubes for field emitter applications. Diamond and Related Materials, 8, 785-791.30.Kuttel, O. M., Groning, O., Emmenegger, C., Nilsson, L., Mallard, E., Diederich, L., & Schlapbach, L. (1999). Field emission from diamond, diamond-like and nanostructured carbon films. Carbon, 37, 745.31. 楊素華、藍慶忠(2004)。奈米碳管場發射顯示器。科學發展,328期,68-71頁32.Saito, Y., Yoshikawa, T., Inagaki, M., Tomita, M., & Hayshi, T. (1993). Growth and structure of graphitic tubules and polyhedral particles in arc-discharge.

Chem. Phys. Lett., 204, 277-282.33.Dai, H., Rinzer, A. G., Nikolaev, P., Thess, A., Colbert, D. T., & Smalley, R. E. (1996). Single-wall nanotubes produces by mental catalyzed disproportion of carbon monoxide. Chem. Phys. Lett., 260, 471-475.34.Lee, Y. H., Kim, S. G., & Tom?nek, D.

(1997). Catalytic growth of single-wall carbon nanotubes: an ab initio study. Phys. Rev. Lett., 78, 2393-2396.35.Endo, M., & Kroto, H. W. (1992).

Formation of carbon nanofibers. J. Phys. Chem., 96, 6491-6944.36.Baker, R. T. K., & Harries, P. S. (1978). The formation of filamentous carbon.

Chemistry and Physics of Carbon, New York: Marcel Deckker, 14, 83-165.37.Baker, R. T. K., Braker, M. A., Harries, P. S., Feates, F. S., & Waite, R. J. (1972). Nucleation and growth of carbon deposits from nickel catalyzed decomposition of acetylene. Journal of Catalysis, 26,

51-62.38.Oberlin, A., Ento, M., & Koyama, T. (1976). Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth, 32, 335-349.39.Baird, T., & Fryer, J. R. (1974). Carbon formation on iron and. nickel foils by hydrocarbon pyrolysis reactions at 700°C. Carbon, 12, 591-602.40.Oberlin, A., Ento, M., & Koyama, T. (1976). High resolution electron microscope observations of graphitized carbon fibers.

Carbon, 14, 133-157.41.Journet, C. et al., (1998). Production of carbon nanotubes. Appl. Phys., 67, 1-9.42.Alan, M. et al., (1998). Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 292, 567-574.43.Yacaman, M. J., Yoshida, M. M., Rendon, L., &

Santiesteban, J. G. (1993). Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett., 62, 202-204.44.Baker, R. T. K., &

Chludzinski, J. J. (1980). Filamentous carbon growth on nickel–iron surfaces—effect of various oxide additives. Journal of Catalysis, 64, 464-478.45.Baker, R. T. K., Harries, P. S., Thomas, R. B., & Waite, R. J. (1973). Formation of filamentous carbon from iron and chromium catalyzed decomposition of acetylene. Journal of Catalysis, 30, 86-95.46.Baker, R. T. K., & Waite, R. J. (1975). Formation of carbonaceous deposit from the platinum-iron catalyzed decomposition. Journal of Catalysis, 37, 101-105.47.Jung, M., Eun, K. Y., Lee, J. K., Baik, Y. J., Lee, K. R., &

Park, J. W. (2001). Growth of carbon nanotubes by chemical vapor deposition. Diamond and Related Materials, 10, 1235-1240.48.Xie, S., Li, W., Pan, Z., Chang, B., & Sun, L. (2000). Self-assembly of shape-controlled nanocrystals and their in-situ thermodynamic properties. Mater. Sci. Eng.

A, 286, 11-15.49.Chen, X. H., Feng, S. Q., Ding, Y., Peng, J. C., & Chen, Z. Z. (1999). The formation conditions of carbon nanotubes array based on FeNi alloy island films. Thin Solid Films, 339, 6-9.50.Lee, C. J., Park, J., Kang, S. Y., & Lee, J. H. (2000). Growth of well-aligned carbon nanotubes on a large area of Co-Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition. Chem. Phys. Lett., 323,

554-559.51.Terrones, M. et al., (1998). Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chem. Phys. Lett., 285, 299-305.52.Liang, Q., Li, Q., Chen, D. L., Zhou, D. R., Zhang, B. L., & Yu, Z. L. (2000). Carbon nanotube prepared in the atmosphere of partial oxidation of methane. Chemical Journal of Chinese Universities-Chineses, 21(4), 623-625.53.Hernadi, K., Fonseca, A., Nagy, J. B., Siska, A., &

Kiricsi, I. (2000). Production of nanotubes by the. catalytic decomposition of different carbon-containing compounds. .Applied Catalysis A:

General, 199, 245-255.54.Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., & Wang, G. (1996). Large-scale synthesis of aligned carbon nanotubes. Science, 274, 1701-1703.55.Pan, Z. W., Xie, S. S., Chang, B. H., Sun, L. F., Zhou, W. Y., & Wang, G.

(1999). Direct growth of aligned open carbon nanotubes by chemical vapor deposition. Chem. Phys. Lett., 299, 97-102.56.Li, A. P., Muller, F., Birner, A., Nielsch, K., & Gosele, U. (1998). Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys., 84, 6023-6026.57.Masuda, H., Yamada, H., Satoh, M., & Asoh, H. (1997). Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett., 71, 2770-2772.58.Masuda, H., & Satoh, M. (1996). Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys., part 2, 35, 126-129.59.Nolan, P. E., Schabel, M. J., & Lynch, D. C. (1995). Hydrogen control of carbon deposit morphology. Carbon, 33, 79-85.60.Pinheiro, P., Schouler, M. C., Gadelle, P., Mermoux, M., & Dooryhee, E. (2000). Effect of

(4)

hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts. Carbon, 38(10), 1469-1479.61.Khassin, A. A., Yurieva, T. M., Zaikovskii, V. I., & Parmon, V. N. (1998). Effect of metallic cobalt particles size on

occurrence of CO disproportionation: Role of fluidized metallic cobalt-carbon solution in carbon nanotube formation. Reaction Kinetic and Catalysis Letter, 64, 63-71.62.Tsai, S. H., Chao, C. W., Lee, C. L., & Shin, H. C. (1999). Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis. Appl. Phys. Lett., 74, 3462-3464.63.Huang, Z. P., Xu, J. W., Ren, Z. F., Wang, J. H., Siegal, M. P., & Provencio, P. N. (1998). Growth of highly-oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Appl. Phys. Lett., 73, 3845-3847.64.Ren, Z. F., Huang, Z. P., Wang, D. Z., Wen, J. G., Xu, J. W., Wang, J. H., Calvet, L. E., Chen, J., Klemic, J. F., & Reed, M. A. (1999). Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl. Phys.

Lett., 75, 1086-1088.65.Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. (1999). Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512-514.66.Kwon, Y. K., Lee, Y. H., Kim, S. G., Jund, P., Tom?nek, D., &

Smalley, R. E. (1997). Morphology and stability of growing multiwall carbon nanotubes. Phys. Rev. Lett., 79, 2065-2068.67.Oh, D. H., & Lee, Y.

H. (1998). Stability and cap formation mechanism of single-walled carbon nanotubes. Phys. Rev. B, 58, 7407-7411.68.Kuznetsov, V. L., Usoltseva, A. N., Chuvilin, A. L., Obraztsova, E. D. & Bonard, J. M. (2001). Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes. Phys. Rev. B, 64, 235401-1.69.Jacoby, S. L. S., Kowalik, J. S., & Pizzo, J. T. (1972). Iterative Methods for Nonlinear Optimization Problems. Prentice Hall, Inc., Englewood Cliffs, New Jersey, ISBN 0–13–.508199–X, 79-83.70.Fowler, R. H., and Nordheim, L. W. (1928) Proc. Roy. Soc. (London) A119, 173.71.Lee, S. F., Chang, Y. P., and Lee, L. Y., (2008). Enhancement of field emission characteristics of carbon nanotubes using non-reactive plasma treatment, Journal of National Kaohsiung Marine

University,23,101-110.72. Hideto Yoshida, Tetsuya Uchiyama, Jun Kikkawa and Seiji Takeda. Growth of single-walled carbon nanotubes on silicon nanowires,Solid State Communication, 141 (2007) 632–634.73. M. Lu, M. K. Li, Z. J. Zhang and H. L. Li.Synthesis of carbon nanotubes/Si nanowires core-sheath structure arrays and their field emission properties.Applied Surface Science, 30 September 2003, Pages 196-202.74.洪違仁。(2008年6月)。SiOx奈米線電漿後處理對場發射特性之影響。大葉大學電機工程系碩士論文。75.賴威君。(2008年6月)

。以N2與CF4電漿前處理催化劑金屬及其對於SiOx奈米線成長之效應。大葉大學電機工程學系碩士班碩士論文。

參考文獻

相關文件

Teachers may encourage students to approach the poem as an unseen text to practise the steps of analysis and annotation, instead of relying on secondary

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

Basing on the observation and assessment results, this study analyzes and discusses the effects and problems of learning the polynomial derivatives on different level students

Microphone and 600 ohm line conduits shall be mechanically and electrically connected to receptacle boxes and electrically grounded to the audio system ground point.. Lines in

【Figure 4-50】 The difference of electrical capacity characteristics of specimens at 5 minutes deposition time with various dispersing percentage carbon

This thesis will focus on the research for the affection of trading trend to internationalization, globlization and the Acting role and influence on high tech field, the change

In short-term forecasting, it is better to apply Grey Prediction Model on Steer-By-Wire and Carbon NanoTube-Field Emission Displays; and to apply Holt exponential smoothing model