• 沒有找到結果。

6. J. W. Edington, Metall. Trans. A, 13A, (1982) p. 703.

7. M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi, Scripta Mater., 36, (1997) p. 699.

8. T. G. Nieh, J. Wadsworth, and O. D. Sherby, in Superplasticity in metals and ceramics, (1997).

9. O. D. Sherby and J. Wadsworth, in Deformation, Processing and Structure, ed., G.

Krauss, ASM, Metal Park, Ohio, (1984) p. 355.

10. T. G. Nieh, C. H. Henshall, and J. Wadsworth, Scripta Metall., 18, (1984) p. 1405.

11. T. G. Nieh, P. S. Gilman, and J. Wadsworth, Scripta Metall., 19, (1985) p. 1375.

12. A. Ball and M. M. Hutchinson, Met. Sci. J., 3, (1969) p. 1.

13. T. G. Nieh and J. Wadsworth, Mater. Sci. Eng., A147, (1991) p. 229.

14. T. G. Nieh, J. Wadsworth, and T. Imai, Scripta Metall. Mater., 26, (1992) p. 703.

15. S. J. Hales, T. R. McNelley, and H. J. McQueen, Metall. Trans. A, 22A, (1991) p. 1037.

16. T. R. McNelley, R. Crooks, P. N. Kalu, and S. A. Rogers, Mater. Sci. Eng., A166, (1993) p. 135.

17. T. R. McNelley, E. -W. Lee, and M. E. Mills, Metall. Trans. A, 17A, (1986) p. 1035.

18. T. R. McNelley and S. J. Hales, in Superplasticity and Superplastic Forming, A. K.

Ghosh and T. R. Bieler, ed., TMS, Warrendale, PA, (1995) p. 57.

19. R. Z. Va liev, A. V. Korznikov, and R. R. Mulyukov, Mater. Sci. Eng., A168, (1993) p.

141.

20. R. Z. Valiev and N. K. Tsenev, in Hot Deformation of Aluminum Alloys, T. G. Langdon, H. D. Merchant, J. G. Morris, and M. A. Zaidi, ed., TMS, Warrendale, PA, (1991) p.

319.

21. R. Z. Valiev, Mater. Sci. Forum, 243-245, (1997) p. 207.

22. H. P. Pu, F. C. Liu, and J. C. Huang, Metall. Mater. Trans., 26A, (1995) p. 1153.

23. H. P. Pu and J. C. Huang, Scripta Metall. Mater., 28, (1993) p. 1125.

24. H. P. Pu and J. C. Huang, Scripta Metall. Mater., 33, (1995) p. 383.

25. M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi, Scripta Mater., 36, (1997) p. 681.

26. T. Mukai, in Thermec’97, T. Chandra and T. Sakai, ed., TMS, Warrendale, PA, (1997) p.

1847.

27. S. Komura, P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, Scripta Mater., 38, (1998) p. 1851.

28. R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, P. B. Berbon, and T. G. Langdon, Scripta Mater., 37, (1997) p. 1945.

29. T. R. Bieler, L. A. Lalli, and S. R. MacEwen, J. Metals, (1998) p. 14.

30. 史碩華,金屬工業,第 32 卷,第 6 期,(1998) p. 39.

31. R. Verma, A. K. Ghosh, S. Kim, and C. Kim, Mater. Sci. Eng., A191, (1995) p. 143.

32. 蘇聖紋,國立中山大學材料科學研究所碩士論文,(1999) p. 2.

33. 林淑貞,鄭忠志,陳連杰,張雲妃,工業材料,第 145 期,(1999) p. 76.

34. Z. Horita, M. Furukawa, J. Wang, M. Nemoto, R. Z. Valiev, Y. Ma, and T. G. Langdon, in Light Weight Alloys for Aerospace Applications, E. W. Lee, N. J. Kim, K. V. Jata, and W. E. Frazier, eds., TMS, Warrendale, PA, (1995) p. 245.

35. J. Wadsworth, A. R. Pelton, and R. E. Lewis, Metall. Trans., 16A, (1985) p. 2319.

36. R. Grimes, W. S. Miller, and R. G. Bulter, J. de Physeque, C3, (1987) p. 239.

37. N. Ridley, D. W. Livesey, and J. Pilling, J. de Physeque, C3, (1987) p. 251.

38. E. E. Underwood, J. Metals, 14, (1962) p. 914.

39. C. W. Humphreys and N. Ridley, J. Mater. Sci., 12, (1997) p. 851.

40. B. Walser and O. D. Sherby, Metall. Trans., 10A, (1979) p. 1461.

41. Y. Maehara, Trans. ISIJ, 27, (1987) p. 705.

42. J. W. Chung and J. R. Cahoon, Metal Sci., 13, (1979) p. 635.

43. J. Weertman, J. Appl. Phys., 28, (1957) p. 1185.

44. W. R. Cannon and O. D. Sherby, Metall. Trans., 1, (1970) p. 1030.

45. H. J. McQueen and M. E. Kassner: in Superplasticity in Aerospace, H. C. Heikkenen, and T. R. McNelley, eds., TMS, Warrendale, PA, (1990) p. 77.

46. E. M. Taleff, G. A. Henshall, T. G. Nieh, D. R. Lesuer, and J. Wadsworth, Metall. Mater.

Trans., 29A, (1998) p. 1081.

47. R. A. Ayres, Metall. Trans., 10A, (1979) p. 849.

48. E. M. Taleff, D. R. Lesuer, and J. Wadsworth, Metall. Mater. Trans., 27A, (1996) p. 343.

49. S. S. Woo, Y. R. Kim, D. H. Shin, and W. J. Kim, Scripta Mater., 37, (1997) p. 1351.

50. T. R. McNelley, D. J. Michel, and A. Salama, Scripta Metall., 23, (1989) p. 1657.

51. A. A. Tavassoli, S. E. Razavi, and N. M. Fallah, Metall. Trans. A, 6A, (1975) p. 591.

52. J. K. Kim, and D. H. Shin, Scripta Mater., 38, (1998) p. 991.

53. D. Y. Maeng, Master Dissertation, Department of Metallurgy Engineering, Chungnam National University, Taejon, Korea (1997).

54. J. Wang, Z. Horita, M. Furukawa, and M. Nemoto, J. Mater. Res., 8, (1993) p. 2810.

55. J. Wang, Z. Horita, M. Furukawa, M. Nemoto, R. Z. Valiev, Y. Ma, and T. G. Langdon, Mater. Res. Soc. Symp. Proc., 319, (1994) p. 293.

56. R. R. Sawtell and C. L. Jensen, Metall. Trans., 21A, (1990) p. 421.

57. T. G. Nieh, R. Kaibyshev, L. M. Hsiung, N. Nguyen, and J. Wadsworth, Scripta Mater., 36, (1997) p. 1011.

58. T. G. Nieh, R. Kaibyshev, L. M. Hsiung, N. Nguyen, and J. Wadsworth, Acta Mater., 46, (1998) p. 2789.

59. P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. Tsenev, R. Valiev, and T. G.

Langdon, Mater. Sci. Forum, 217-222, (1996) p. 1013.

60. P. B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. Tsenev, R. Valiev, and T. G.

Langdon, Mater. Sci. Forum, 243-245, (1997) p. 239.

61. E. -W. Lee, T. R. McNelley, and A. F. Stengel, Metall. Trans. A, 17A, (1986) p. 1043.

62. N. K. Tsenev, R. Z. Valiev, and I. R. Kuzeev, Mater. Sci. Forum, 242, (1997) p. 127.

63. M. V. Markushev, C. C. Bampton, M. Y. Murashkin, and D. A. Hardwick, Mater. Sci.

Eng., A234-236, (1997) p. 927.

64. T. Hasegawa, T. Yasuno, T. Nagai, and T. Takahashi, Acta Mater., 46, (1998) p. 6001.

65. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R. G. Hong, Scripta Mater., 39, (1998) p. 1221.

66. S. L. Dai, J. P. Delplanque, and E. J. Lavernia, Metall. Mater. Trans. A, 29A, (1998) p.2597.

67. 廖忠賢,黃志青,科儀新知,第十九卷,第五期,(1998) p. 43.

68. V. Randle, in Oxford Guide Book Series, Electron Backscatter Diffraction, p. 3.

69. V. Randle, in Oxford Guide Book Series, Crystal Orientation Mapping, p. 5.

70. R. E. Reed-Hill and R. Abbaschian, in Physical Metallurgy Principle, 3rd Edition, International Thomson Publishing, Boston, (1994) p. 197.

71. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 2.

72. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 39.

73. T. Wantanabe, S. Kimura, and S. Karashima, Phil. Mag., A49, (1984) p. 845.

74. M. Hatherly and W. B. Hutchinson, in An Introduction to Textures in Metals, Institution of Metallurgist, (1979) p. 6.

75. F. J. Humphreys and M. Hatherly, in Recrystallization and Related Annealing

Phenomena, (1995) p. 437.

76. F. J. Humphreys and M. Hatherly, in Recrystallization and Related Annealing Phenomena, (1995) p. 46.

77. T. R. McNelley and M. E. McMahon, Metall. Mater. Trans. A, 27A, (1996) p. 2252.

78. O. V. Mishin, B. Bay, and D. J. Jensen, Metall. Mater. Trans. A, 31A, (2000) p. 1653.

79. C. H. Choi, J. W. Kwon, K. H. Oh, and D. N. Lee, Acta Mater., 45, (1997) p. 5119.

80. T. S. Chou and S. R. Chen, Chinese Journal of Mater. Sci., 31, (1999) p. 226.

81. A. Gholinia, P. B. Prangnell, and M. V. Markushev, Acta Mater., 48, (2000) p. 1115.

82. J. Liu and D. J. Chakrabarti, Acta Mater., 44, (1996) p. 4647.

83. S. Kobayashi, T. Yoshimura, S. Tsurekawa, and T. Wantanabe, Mater. Sci. Forum, 304-306, (1999), p. 591.

84. R. Verma, P. A. Friedman, A. K. Ghosh, S. Kim, and C. Kim, Metall. Mater. Trans. A, 27A, (1996) p. 1889.

85. P. A. Friedman and A. K. Ghosh, Metall. Mater. Trans. A, 27A, (1996) p. 3827.

86. H. Iwasaki, T. Mori, T. Tagata, M. Matsuo, and K. Higashi, Mater. Sci. Forum, 233-234, (1997) p. 293.

87. Y. Wu, L. D. Castillo, and E. J. Lavernia, Metall. Mater. Trans. A, 28A, (1997) p. 1059.

88. S. N. Patankar and T. M. Jen, Scripta Mater., 38, (1998) p. 1255.

89. N. Tsuji, K. Shiotsuki, H. Utsunomiya, and Y. Saito, in Towards Inno vation in

Superplasticity II, Kobe, JIMIS, 1998, p. 10.

90. 李士瑋,葉均蔚,中國材料科學學會輕合金及其複合材料論文集,(1998) p. 53.

91. M. Kawazoe, T. Shibata, T. Mukai, and K. Higashi, Scripta Mater., 36, (1997) p. 699.

92. M. Hansen and K. Anderko, in Constitution of Binary Alloys, (1958) p.106.

93. M. Hansen and K. Anderko, in Constitution of Binary Alloys, (1958) p.111.

94. J. Hirsch and K.Lücke, Acta Metall., 36, (1988) p. 2863.

95. T. Watanabe and S. Tsurekawa, Acta Mater., 47, (1999) p. 4171.

96. J. C. Huang, I. C. Hsiao, T. D. Wang, and B. Y. Lou, Scripta Metall., 43, (2000) p. 213.

97. P. L. Sun, P. W. Kao, and C. P. Chang, Proc. 1999 Annual Conf. of Chinese Society for Materials Science, Tsinchu, Taiwan, B-5, (1999).

98. M. Furakawa, Y. Iwahashi, Z. Horita, M. Nemoto, N. K. Tsenev, P. Z. Valiev, and T. G.

Langdon, Acta Mater., 45, (1997) p.4751.

99. R. B. McLellan and T. Ishikawa, J. Phys. Chem. Solids, 48, (1987) p. 603.

100. H. E. Boyer and T. L. Gall eds., in Metals Handbook, desk edition, American Society for Metals, (1984) p. 6-31.

101. J. Harper and J. E. Dorn, Acta Mater., 5, (1957) p. 654.

102. B. Burton, Phil. Mag., 27, (1972) p. 645.

103. R. S. Mishra, T. R. Bieler, and A. K. Mukherjee, Acta Metall. Mater., 43, (1995) p. 877.

104. K. -T. Park and F. A. Mohamed, Metall. Mater. Trans., 26A, (1995) p. 3119.

105. T. S. Lundy and J. F. Murdock, J. Appl. Phys., 33, (1962) p. 1671.

106. H. J. Frost and M. F. Ashby, in Deformation-Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, New York, Pergamon Press, (1982) p. 21.

107. R. W. Balluffi, Phys. Stat. Sol., 42, (1970) p. 11.

表 1-1 文獻上已報導關於 Al-Mg 系之高溫或低溫超塑性

合金 處理法 晶粒尺寸 測試條件 伸長量 參考文獻 (A) 高溫超塑性部分 (400 oC 以上):

Al-7Mg-1Fe Rolling 2 µm 465 oC, 1x10-1 s-1 450% [51]

520 oC, 2x10-1 s-1 250%

Al-4Mg-0.5Sc Rolling 0.5 µm 538 oC, 2x10-3 s-1 1020% [55]

15.2 µm 500 oC, 1x10-4 s-1 200% [86]

530 oC, 1x10-4 s-1 350%

5083 Al Spray-De posited+T

MT 550 oC, 3x10-5 s-1 465%

5083 Al Rolling 7 µm 550 oC, 8x10-4 s-1 300% [84]

550 oC, 1x10-2 s-1 150%

550 oC, two step 470%

5083 Al Rolling 9.5 µm 530 oC, 5x10-4 s-1 430%

550 oC, 5x10-4 s-1 300%

560 oC, 5x10-4 s-1 610%

5083 Al Rolling 10 µm 550 oC, 2x10-5 s-1 480% [87]

550 oC, 1x10-4 s-1 380%

5083 Al 往復式 擠型

2.5 µm 500 oC, 2x10-1 s-1 361% [89]

5083 Al Rolling 6.5 µm 525 oC, two step 450% [83]

555 oC, two step 600%

525 oC/H. P., two step

661%

Al-5.3Mg Rolling 140 µm 450 oC, 1x10-3 s-1 250% [48]

450 oC, 1x10-1 s-1 225%

Al-7Mg 130 µm 450 oC, 1x10-3 s-1 250%

450 oC, 1x10-1 s-1 250%

Al-11Mg 55 µm 450 oC, 1x10-3 s-1 125%

450 oC, 1x10-1 s-1 150%

Al-5.8Mg-0.3Sc Rolling 1 µm 475 oC, 5x10-2 s-1 170% [56]

Al-5.8Mg-0.3Sc Rolling 0.2-1 µm 475 oC, 1.4x10-2 s-1 1130% [57]

Al-2.3Mg 0.5 µm 475 oC, 1x10-1 s-1 80% [63]

Al-4Mg

機械合金

0.5 µm 475 oC, 1x100 s-1 100%

(B) 低溫超塑性部分 (400 oC 以下):

Al-3Mg ECAP 0.2 µm 130 oC, 1.3x10-5 s-1 170% [53]

130 oC, 1.3x10-2 s-1 30%

Al-2.8Mg Rolling 30-450

µm

200 oC, 1x10-4 s-1 84% [45]

Al-5.5Mg 250 µm 200 oC, 1x10-4 s-1 51%

400 oC, 1x10-4 s-1 254%

Al-3Mg-0.25Mn 200 µm 400 oC, 1x10-3 s-1 165%

Al-3Mg-0.50Mn 140 µm 400 oC, 1x10-3 s-1 142%

Al-3Mg-0.2Zr 23 µm 400 oC, 2x10-3 s-1 135%

Al-1Mg Rolling --- 250 oC, 2x10-4 s-1 100% [46]

Al-3Mg --- 250 oC, 2x10-4 s-1 150%

Al-6Mg --- 250 oC, 2x10-4 s-1 160%

5182-O --- 250 oC, 2x10-4 s-1 180%

Al-1.02Mg-0.50Mn Rolling --- 400 oC, 1x10-3 s-1 116% [47]

Al-2.52Mg-0.46Mn --- 400 oC, 1x10-3 s-1 116%

Al-4.05Mg-0.46Mn --- 300 oC, 1x10-4 s-1 110%

Al-5.5Mg-0.47Mn --- 400 oC, 1x10-3 s-1 125%

Al-6.64Mg-0.48Mn --- 300 oC, 1x10-4 s-1 130%

5456-H343 Rolling --- 275 oC, 2.4x10-5 s-1 155% [50]

Al-10Mg-0.1Zr TMT 2.4 µm 300 oC, 1x10-3 s-1 600% [14]

Al-10Mg-0.1Zr TMT 0.85 µm 300 oC, 1x10-3 s-1 1100% [15]

300 oC, 5x10-2 s-1 400%

Al-3Mg-0.2Sc ECAP 0.2

µ

m 300 oC, 3x10-3 s-1 700% [26]

400 oC, 2x10-2 s-1 1030%

Al-4Mg-0.5Sc Rolling 0.5 µm 400 oC, 1x10-2 s-1 1020% [55]

400 oC, 1x10-1 s-1 440%

ECAP 1 µm 330 oC, 3.3x10-3 s-1 550% [58]

Al-5.5Mg-2.2Li-0.1

2Zr 330 oC, 3.3x10-2 s-1 341%

Al-5Mg-2Li-0.1Zr ECAP 0.8

µ

m 300 oC, 1x10-4 s-1 330% [61]

ECA 1.2 µm 350 oC, 1x10-2 s-1 1180% [27]

Al-5.5Mg-2.2Li-0.1

2Zr 350 oC, 1x100 s-1 310%

5083 Al ARB 280 nm 200 oC, 中速 220% [88]

200 oC, 8x10-4 s-1 200% [16]

TMT 0.2-0.5

µm

300 oC, 2x10-3 s-1 400%

Al-10.2Mg-0.52Mn

400 oC, 2x10-3 s-1 580%

Al-10.2Mg-0.52Mn TMT+

annealing

0.5

µ

m 300 oC, 6x10-3 s-1 580% [60]

ECAP 0.3

µ

m 200 oC, 1x10-3 s-1 90% [90]

5056 Al

275 oC, 1x10-5 s-1 185%

表 1-2 {011}<2 1 1> 與 {110}<001> 之尤拉角度。[70]

織構組成

φ

1

Φ φ

2

35 45 0

55 90 45

{011}<2 1 1>

35 45 90

90 90 45

0 45 0

{110}<001>

0 45 90

表 1-3 面心立方晶系金屬常見之軋延織構

織構名稱 {h k l} <u v w>

φ

1

Φ φ

2

Cube 001 100 0 0 0

Copper 112 111 90 35 45

Brass 011 211 35 45 90

Goss 011 100 0 45 90

S-type 123 634 59 37 63

R-type 124 211 56.8 29.2 26.5

表 2-1 5083 鋁合金之組成 (wt%)

Mg Mn Si Fe Zn Cr Ti Cu Al 4.5% 0.70% 0.40% 0.40% 0.25%. 0.15% 0.15%. 0.10%. Bal.

表 2-2 各種試片之熱機處理條件

試片名稱 軋延或熱處理條件 總軋延量 真實應變量

AR 鑄錠於 520±10 oC 時,熱軋延至 30 mm。 --- --- ARA AR 試片於 500 oC 固溶處理 1 小時。 --- ---

TMT1

由 12 mm 溫軋延至 1 mm,並且每兩道軋 延之間於 200 oC 退火一次,時間約 30 分 鐘。

91.67% 2.48

TMT2

由 30 mm 溫軋延至 2 mm,並且每兩道軋 延之間於 200 oC 退火一次,時間約 30 分 鐘。

93.33% 2.71

TMT2a

由 30 mm 冷軋延至 2 mm,其中於 320 oC

退火 6 次,每次時間約 10 分鐘。 93.33% 2.71

TMT3

由 30 mm 溫軋延至 1 mm,並且每兩道軋 延之間於 200 oC 退火一次,時間約 30 分 鐘。

96.67% 3.40

TMT3a

由 30 mm 溫軋延至 7.5 mm,並且每兩道 軋延之間於 250 oC 退火一次,時間約 5 分鐘;由 7.5 mm 溫軋延至 1 mm,每兩道 軋延間於 200 oC 退火一次,時間為 30 分 鐘。

96.67% 3.40

TMT3b

在 500 oC 時,由 30 mm 熱軋延至 5.6 mm;再由 5.6 mm 冷軋延至 2.08 mm 後,

於 200 oC 退火 30 分鐘,再冷軋延至1 mm。

96.67% 3.40

TMT4

由 30 mm 溫軋延至 0.5 mm,並且每兩道 軋延之間於 200 oC 退火一次,時間約 30 分鐘。

98.33% 4.09

表 3-1 AR 試片與各種經過不同溫度退火後 TMT3 試片之室溫機械性質比較

Specimen condition UTS, MPa Elongation

As-received (AR) 370 12%

AR+annealing at 500 oC for 1 hr (ARA) 316 20%

As-TMT3 507 10%

TMT3+annealing at 100 oC for 0.5 hr 493 10%

TMT3+annealing at 150 oC for 0.5 hr 481 11%

TMT3+annealing at 200 oC for 0.5 hr 470 12%

TMT3+annealing at 250 oC for 0.5 hr 423 18%

表 3-2 ARA 試片與 TMT3 試片在高於室溫溫度之機性測試比較

試片名稱 ARA TMT3

測試條件 Elongation UTS, MPa Elongation UTS, MPa 200 oC, 8x10-5 s-1 --- --- 187% 100.7 MPa 200 oC, 2x10-4 s-1 --- --- 152% 126.7 MPa 200 oC, 5x10-4 s-1 --- --- 170% 149.3 MPa 200 oC, 1x10-3 s-1 --- --- 125% 184.7 MPa 200 oC, 2x10-3 s-1 --- --- 120% 207.2 MPa 200 oC, 5x10-3 s-1 --- --- 71% 243.0 MPa 200 oC, 1x10-2 s-1 --- --- 73% 271.4 MPa 230 oC, 8x10-5 s-1 --- --- 237% 54.5 MPa 230 oC, 2x10-4 s-1 --- --- 247% 67.0 MPa

230 oC, 5x10-4 s-1 --- --- 228% 86.2 MPa 230 oC, 8x10-4 s-1 --- --- 405% 102.5 MPa 230 oC, 1x10-3 s-1 --- --- 375% 107.9 MPa 230 oC, 2x10-3 s-1 --- --- 511% 127.9 MPa 230 oC, 5x10-3 s-1 --- --- 199% 166.6 MPa 230 oC, 8x10-3 s-1 --- --- 136% 189.9 MPa 250 oC, 8x10-5 s-1 --- --- 265% 43.0 MPa 250 oC, 2x10-4 s-1 --- --- 234% 49.1 MPa 250 oC, 5x10-4 s-1 110% 134.2 MPa 368% 62.4 MPa 250 oC, 8x10-4 s-1 124% 142.0 MPa 378% 71.3 MPa 250 oC, 1x10-3 s-1 122% 146.0 MPa 443% 77.1 MPa 250 oC, 2x10-3 s-1 82% 156.8 MPa 316% 95.6 MPa 250 oC, 5x10-3 s-1 --- --- 261% 125.7 MPa 250 oC, 8x10-3 s-1 --- --- 245% 146.3 MPa 270 oC, 8x10-5 s-1 --- --- 152% 59.6 MPa 270 oC, 2x10-4 s-1 --- --- 186% 54.3 MPa 270 oC, 5x10-4 s-1 --- --- 241% 63.8 MPa 270 oC, 8x10-4 s-1 --- --- 216% 68.6 MPa 270 oC, 1x10-3 s-1 --- --- 232% 77.7 MPa 表 3-2 (續前頁)

270 oC, 2x10-3 s-1 --- --- 247% 88.3 MPa 270 oC, 5x10-3 s-1 --- --- 176% 114.5 MPa 270 oC, 8x10-3 s-1 --- --- 205% 126.7 MPa 300 oC, 8x10-5 s-1 --- --- 202% 35.4 MPa 300 oC, 2x10-4 s-1 --- --- 162% 51.0 MPa 300 oC, 5x10-4 s-1 --- --- 137% 67.0 MPa 300 oC, 1x10-3 s-1 144% 89.9 MPa 153% 83.9 MPa 300 oC, 5x10-3 s-1 --- --- 136% 118.1 MPa 300 oC, 1x10-2 s-1 --- --- 132% 125.7 MPa 350 oC, 8x10-5 s-1 --- --- 221% 14.7 MPa 350 oC, 2x10-4 s-1 --- --- 199% 19.9 MPa 350 oC, 5x10-4 s-1 --- --- 181% 29.7 MPa

350 oC, 1x10-3 s-1 196% 54.9 MPa 202% 37.5 MPa 350 oC, 5x10-3 s-1 --- --- 162% 68.7 MPa 350 oC, 1x10-2 s-1 --- --- 175% 80.8 MPa 400 oC, 8x10-5 s-1 --- --- 216% 7.9 MPa 400 oC, 2x10-4 s-1 --- --- 244% 11.5 MPa 400 oC, 5x10-4 s-1 --- --- 232% 13.0 MPa 400 oC, 1x10-3 s-1 184% 27.9 MPa 225% 20.2 MPa 400 oC, 5x10-3 s-1 --- --- 200% 33.8 MPa 400 oC, 1x10-2 s-1 --- --- 206% 43.6 MPa 450 oC, 8x10-5 s-1 --- --- 241% 5.0 MPa 450 oC, 2x10-4 s-1 --- --- 272% 5.6 MPa 450 oC, 5x10-4 s-1 --- --- 244% 6.5 MPa 450 oC, 8x10-4 s-1 159% 16.1 MPa --- --- 450 oC, 1x10-3 s-1 160% 18.4 MPa 267% 13.3 MPa 450 oC, 2x10-3 s-1 186% 21.8 MPa 265% 12.2 MPa 450 oC, 5x10-3 s-1 --- --- 226% 17.4 MPa 450 oC, 1x10-2 s-1 --- --- 252% 24.5 MPa 500 oC, 8x10-5 s-1 --- --- 342% 1.4 MPa 500 oC, 2x10-4 s-1 --- --- 402% 3.2 MPa 表 3-2 (續前頁)

500 oC, 5x10-4 s-1 --- --- 316% 4.3 MPa 500 oC, 8x10-4 s-1 154% 10.7 MPa --- --- 500 oC, 1x10-3 s-1 118% 13.7 MPa 400% 5.8 MPa 500 oC, 2x10-3 s-1 126% 16.4 MPa --- --- 500 oC, 5x10-3 s-1 --- --- 251% 11.3 MPa 500 oC, 1x10-2 s-1 --- --- 277% 12.4 MPa 550 oC, 8x10-4 s-1 116% 7.1 MPa 327% 2.0 MPa 550 oC, 1x10-3 s-1 110% 7.7 MPa 550% 2.3 MPa 550 oC, 2x10-3 s-1 160% 9.1 MPa 531% 3.1 MPa 550 oC, 5x10-3 s-1 --- --- 331% 4.9 MPa

表 3-3 TMT3 試片在經過不同溫度 30 分鐘的退火所得機械性質

Specimen condition Testing condition Elongation UTS, MPa As-TMT3 250 oC, 1x10-3 s-1 443% 77

TMT3+annealing at 100 oC for 0.5 hr 250 oC, 1x10-3 s-1 212% 86 TMT3+annealing at 150 oC for 0.5 hr 250 oC, 1x10-3 s-1 193% 90 TMT3+annealing at 200 oC for 0.5 hr 250 oC, 1x10-3 s-1 188% 86 TMT3+annealing at 250 oC for 0.5 hr 250 oC, 1x10-3 s-1 300% 83

表 3-4 TMT3 試片升溫至 250 oC 後,分別再靜置 0 ~ 60 分鐘所得機械性質。

Specimen condition Testing condition Elongation UTS, MPa As-TMT3 250 oC, 1x10-3 s-1 443% 77

TMT3+annealing at 250 oC for 10 min 250 oC, 1x10-3 s-1 303% 72 TMT3+annealing at 250 oC for 20 min 250 oC, 1x10-3 s-1 250% 80 TMT3+annealing at 250 oC for 30 min 250 oC, 1x10-3 s-1 300% 83 TMT3+annealing at 250 oC for 40 min 250 oC, 1x10-3 s-1 278% 80 TMT3+annealing at 250 oC for 50 min 250 oC, 1x10-3 s-1 312% 72 TMT3+annealing at 250 oC for 60 min 250 oC, 1x10-3 s-1 297% 74

表 3-5 AR、ARA 試片以及六種不同熱機處理後試片之室溫機械性質

試片名稱 UTS, MPa Elongation, %

AR 370.0 12%

ARA 316.0 20%

TMT1 505.4 12%

TMT2 512.0 9%

TMT2a --- ---

TMT3 507.0 10%

TMT3a 517.4 12%

TMT3b 545.9 7%

TMT4 534.7 4%

表 3-6 TMT1、TMT2、TMT3 及 TMT4 試片之機性測試比較

試片名稱

(壓延量)

TMT1

(91.67%)

TMT2 (93.33%)

TMT3

(96.67%)

TMT4

(98.33%)

測試條件 Elongation UTS Elongation UTS Elongation UTS Elongation UTS 200 oC, 5x10-4 s-1 --- --- 100% 219.0 170% 149.3 --- --- 230 oC, 8x10-4 s-1 --- --- 204% --- 405% 102.5 --- --- 230 oC, 1x10-3 s-1 --- --- --- --- 375% 107.9 272% 108.8 250 oC, 5x10-4 s-1 224% 74.0 185% 121.0 368% 62.4 359% 56.8 250 oC, 8x10-4 s-1 350% 85.6 215% 118.0 378% 71.3 306% 65.0 250 oC, 1x10-3 s-1 242% 94.4 --- --- 443% 77.1 356% 73.7 250 oC, 2x10-3 s-1 202% 116.3 189% 147.0 316% 95.6 367% 95.4 250 oC, 5x10-3 s-1 --- --- --- --- 261% 125.7 353% 114.9

250 oC, 8x10-3 s-1 --- --- --- --- 245% 146.3 300% 136.8 250 oC, 1x10-2 s-1 --- --- --- --- --- --- 287% 143.3 250 oC, 1x10-1 s-1 --- --- --- --- --- --- 100% 250.4 270 oC, 8x10-4 s-1 --- --- 197% 92.0 216% 68.6 --- --- 270 oC, 1x10-3 s-1 --- --- --- --- 232% 77.7 --- --- 300 oC, 5x10-4 s-1 137% 67.0 140% 77.0

300 oC, 1x10-3 s-1 145% 82.5 --- --- 153% 83.9 142% 81.3 350 oC, 1x10-3 s-1 190% 36.6 --- --- 202% 37.5 --- --- 350 oC, 2x10-3 s-1 163% 49.2 --- --- --- --- --- --- 400 oC, 1x10-3 s-1 204% 17.7 --- --- 225% 20.2 276% 17.6 450 oC, 8x10-4 s-1 257% 8.0 --- --- --- --- --- --- 450 oC, 1x10-3 s-1 235% 8.4 --- --- 267% 13.3 --- --- 450 oC, 2x10-3 s-1 246% 8.4 --- --- 265% 12.2 --- --- 500 oC, 1x10-3 s-1 393% 4.7 --- --- 400% 5.8 --- --- 500 oC, 2x10-3 s-1 354% 6.2 --- --- --- --- --- --- 550 oC, 1x10-3 s-1 534% 2.0 --- --- 550% 2.3 --- --- 550 oC, 2x10-3 s-1 --- --- --- --- 531% 3.1 383% 3.0 註:UTS 單位為 MPa

表 3-7 TMT3、TMT3a 及 TMT3b 試片之機性測試比較

試片名稱 TMT3 TMT3a TMT3b

測試條件 Elongation UTS, MPa Elongation UTS, MPa Elongation UTS, MPa 100 oC, 5x10-4 s-1 --- --- --- --- 21% 477.8 MPa 200 oC, 5x10-4 s-1 --- --- --- --- 121% 176.8 MPa 200 oC, 1x10-3 s-1 125% 184.7 MPa 142% 201.5 MPa --- --- 230 oC, 1x10-3 s-1 375% 107.9 MPa 333% 113.5 MPa --- --- 250 oC, 5x10-4 s-1 378% 62.4 MPa 301% 63.4 MPa 158% 88.7 MPa 250 oC, 8x10-4 s-1 363% 71.3 MPa 314% 76.0 MPa --- --- 250 oC, 1x10-3 s-1 443% 77.1 MPa 346% 79.6 MPa 140% 102.9 MPa 250 oC, 2x10-3 s-1 316% 95.6 MPa 330% 100.7 MPa 161% 121.1 MPa 300 oC, 1x10-3 s-1 153% 83.9 MPa 159% 79.8 MPa 166% 82.4 MPa

350 oC, 1x10-3 s-1 202% 37.5 MPa 216% 35.5 MPa --- --- 400 oC, 1x10-3 s-1 225% 20.2 MPa 253% 16.6 MPa 228% 15.4 MPa 450 oC, 1x10-3 s-1 267% 13.3 MPa 338% 7.4 MPa --- --- 500 oC, 1x10-3 s-1 400% 5.8 MPa --- --- 375% 4.8 MPa 550 oC, 1x10-3 s-1 550% 2.3 MPa --- --- --- ---

表 3-8 TMT3 試片於 250 oC 及 1x10-3 s-1的條件下,分別拉伸至不同的伸長量(e),其相 對之真實應變 (ε) 及試片的局部塑性真實應變 (ε′)。

Engineering elongation of the gauge length, e

True strain of the gauge length,

ε

Local plastic true strain,

ε

10% 0.1 0.10

20% 0.2 0.25

42% 0.4 0.42

108% 0.7 0.97

153% 0.9 1.31

216% 1.2 2.21

表 3-9 TMT2 與 TMT2a 試片之晶界角度分佈及共位晶界所佔比例

試片名稱 TMT2 TMT2a

LAB, % 26.9 36.3

MAB, % 9.5 7.0

HAB, % 63.6 56.7

Σ

, % 13.7 10.9

Σ=3

n, % 7.1 5.8

Σ=3

n/Σ, % 51.8 53.2

Σ/(MAB+HAB), %

18.7 17.1

Σ=3

n/(MAB+HAB), % 9.7 9.1

表 3-10 TMT1、TMT2、TMT3 及 TMT4 試片之晶界角度分佈及共位晶界所佔比例

試片名稱 TMT1 TMT2 TMT3 TMT4

LAB, % 28.3 26.9 27.8 16.6

MAB, % 10.4 9.5 8.9 12.5

HAB, % 61.3 63.6 63.3 70.9

Σ, %

12.5 13.7 12.5 14.6

Σ=3

n, % 6.6 7.1 6.0 7.3

Σ=3

n/Σ, % 52.8 51.8 48.0 50.0

Σ/(MAB+HAB), %

17.4 18.7 17.3 17.5

Σ=3

n/(MAB+HAB), % 9.2 9.7 8.3 8.7

表 3-11 TMT3、TMT3a 與 TMT3b 試片之晶界角度分佈及共位晶界所佔比例

試片名稱 TMT3 TMT3a TMT3b

LAB, % 27.8 29.1 43.4

MAB, % 8.9 9.2 6.1

HAB, % 63.3 61.7 50.5

Σ, %

12.5 13.1 10.6

Σ=3

n, % 6.0 5.9 6.4

Σ=3

n/Σ, % 48.0 45.0 60.4

Σ

/(MAB+HAB), % 17.3 18.5 18.7

Σ=3

n/(MAB+HAB), % 8.3 8.3 11.3

表 3-12 剛熱機處理後之 TMT3 試片,並升溫至 250 oC,及分別維持 30、60 分鐘後之 晶界角度分佈及共位晶界所佔比例。

試片名稱 As-TMT3 As-heated Held 30 min Held 60 min

LAB, % 27.8 49.1 41.7 23.6

MAB, % 8.9 14.3 15.5 19.7

HAB, % 63.3 36.5 42.8 56.7

Σ, %

12.5 11.4 10.9 16.9

Σ=3

n, % 6.0 7.4 4.9 7.0

Σ=3

n/Σ, % 48.0 64.9 45.0 41.4

Σ/(MAB+HAB), %

17.3 21.8 18.7 22.1

Σ=3

n/(MAB+HAB), % 8.3 14.5 8.4 9.1

表 4-1 TMT3 試片在 200、230 及 250 oC 及各應變速率的條件下,所擷取ε = 0.4 之真 實應力值。

測試條件 200 oC 230 oC 250 oC 8x10-5 s-1 132.71 MPa 70.72 MPa 56.41 MPa 2x10-4 s-1 153.85 MPa 88.87 MPa 68.37 MPa 5x10-4 s-1 183.02 MPa 110.42 MPa 83.31 MPa 8x10-4 s-1 --- 126.95 MPa 96.46 MPa 1x10-3 s-1 211.38 MPa 135.08 MPa 104.45 MPa 2x10-3 s-1 231.35 MPa 158.41 MPa 121.19 MPa 5x10-3 s-1 247.65 MPa 193.19 MPa 151.59 MPa 8x10-3 s-1 --- 208.45 MPa 164.85 MPa 1x10-2 s-1 277.55 MPa --- ---

表 4-2 TMT3 試片在 200 ~ 250 oC 之溫度區間,以 n 等於 3、3.5 及 4 帶入

ε& 對σ作圖,

1n 分別求得各 n 值相關之初始應力值及線性關係精確度 (r)。

n = 3 n = 3.5 n = 4

Temperature

σ

th, MPa r

σ

th, MPa r

σ

th, MPa r 200 oC 107.54 0.96899 67.92 0.99516 78.11 0.98011 230 oC 37.35 0.99216 23.58 0.99535 6.79 0.99716 250 oC 29.43 0.99582 16.98 0.9977 negative 0.99887

表 4-3 TMT3 試片升溫至 250 oC,並恆溫靜置 0 ~ 60 分鐘後,再於 1x10-3 s-1的條件下 進行拉伸,並擷取真實應變等於 0.4 之真實應力值,及恆溫靜置當時之晶粒尺寸。

Time, min Grain size, µm Flow stress, MPa

0 min 0.50 104.5

10 min 0.65 98.9

20 min 0.75 114.4

30 min 0.75 119.6

40 min 0.95 110.1

50 min 1.55 105.8

60 min 1.70 103.1

表 4-4 TMT3 試片在 300、350 及 400 oC 及各應變速率的條件下,所擷取ε = 0.4 之真 實應力值。

測試條件 300 oC 350 oC 400 oC 8x10-5 s-1 47.18 MPa 21.22 MPa 11.62 MPa 2x10-4 s-1 57.34 MPa 27.30 MPa 15.27 MPa 5x10-4 s-1 70.82 MPa 37.76 MPa 17.76 MPa 1x10-3 s-1 82.64 MPa 45.34 MPa 26.25 MPa 5x10-3 s-1 121.22 MPa 70.69 MPa 40.36 MPa 1x10-2 s-1 132.80 MPa 84.63 MPa 47.91 MPa

表 4-5 TMT3 試片在 300 ~ 400 oC 之溫度區間,以 n 等於 2.5、3 及 3.5 帶入

ε& 對σ作

1n 圖,分別求得各 n 值相關之初始應力值及線性關係精確度 (r)。

n = 2.5 n = 3 n = 3.5 Temperature

σ

th, MPa r

σ

th, MPa r

σ

th, MPa r

300 oC 34.33 0.98312 28.00 0.99278 19.54 0.99530 350 oC 11.09 0.99123 7.92 0.99804 0.52 0.99929 400 oC 3.70 0.99014 2.11 0.99518 negative 0.99596

表 4-6 TMT3 試片在 450、500 及 550 oC 及各應變速率的條件下,所擷取ε = 0.4 之真 實應力值。

測試條件 450 oC 500 oC 550 oC 8x10-5 s-1 6.57 MPa 1.83 MPa --- 2x10-4 s-1 6.70 MPa 3.56 MPa --- 5x10-4 s-1 9.44 MPa 6.09 MPa --- 8x10-4 s-1 --- --- 2.81 MPa 1x10-3 s-1 13.10 MPa 6.91 MPa 2.88 MPa 2x10-3 s-1 --- --- 4.51 MPa 5x10-3 s-1 23.52 MPa 14.95 MPa 6.90 MPa 1x10-2 s-1 30.48 MPa 17.20 MPa ---

表 4-7 TMT3 試片在 450 ~ 550 oC 之溫度區間,以 n 等於 1.5、1.8 及 2.0 帶入

ε& 對σ

1n 作圖,分別求得各 n 值相關之初始應力值及線性關係精確度 (r)。

n = 1.5 n = 1.8 n = 2.0 Temperature

σ

th, MPa r

σ

th, MPa r

σ

th, MPa r

450 oC 6.34 0.99128 4.49 0.99589 3.56 0.99759 500 oC 2.51 0.97050 1.85 0.98058 1.18 0.98488 550 oC 0.79 0.99560 0.39 0.99667 negative 0.99692

表 4-8 ARA 試片在 250、450、500 及 550 oC 及各應變速率的條件下,所擷取ε = 0.3 之真實應力值。

測試條件 250 oC 450 oC 500 oC 550 oC 5x10-4 s-1 150.32 MPa --- --- --- 8x10-4 s-1 162.34 MPa 19.32 MPa 13.30 MPa 7.75 MPa 1x10-3 s-1 169.62 MPa 20.74 MPa 16.08 MPa 8.70 MPa 2x10-3 s-1 183.40 MPa 25.65 MPa 18.41 MPa 10.11 MPa

圖 1-1 細晶材料之高溫變形行為 [8]

圖 1-2 晶界滑移與差排滑移兩機構對晶粒細化之關係圖 [8]

圖 1-3 電子背向散射繞射形成原理示意圖 [68]

圖 1-4 電子背向散射繞射儀基本架設系統 [69]

(a)

(b)

圖 1-5 (a) 旋轉共位晶界;(b) 傾斜共位晶界之示意圖。[70]

圖 1-6 (a) 一單晶立方晶系金屬在 {100} 立體投影空間之投影示意圖;(b) 單一晶粒之 投影圖;(c) 具有織構之多晶金屬之投影圖;(d) 在極圖上投影點之密度分佈;(e) 以等 高線來表示密度之分佈。[74]

圖 1-7 面心立方晶系金屬在 (a) (100);(b) (110);(c) (111) 極圖上,一些常見之織構組 成。[74]

圖 1-8 Bunge 對軋延板材所定義之尤拉角。[75]

圖 1-9 (a) 由三個尤拉角 (φ1、

Φ

φ

2) 所構成之尤拉空間;(b) 分別以φ2為 0, 5, 10 …90o 之區隔,將尤拉空間展開。[75]

圖 1-10 面心立方晶系金屬在尤拉空間上所常見之織構組織,並呈現連續管狀分佈之

α-fiber 與β-fiber。[76]

Subsize Specimen mm

G-Gage length 8

W-Width 6

T-Thickness 0.5-2

R-Radius of fillet 2

L-Overall length 65

A-Length of grip section 25.5

B-Width of grip section 20

D-Diameter of hole for pin 6.2

E-Edge distance from pin 13

圖 2-2 5083 鋁合金拉伸試片之尺寸規格

圖 3-3 ARA 試片與 TMT3 試片,於 250 oC 及 1x10-3 s-1的條件下,兩者拉伸真實應力 應變曲線之比較圖。

0 50 100 150 200

0 0.5 1 1.5 2

ARA TMT3

True stress, MPa

True strain a

b

c d

e

f

圖 3-4 ARA 試片與 TMT3 試片,於 300 oC 及 1x10-3 s-1的條件下,兩者拉伸真實應力 應變曲線之比較圖。

0 50 100 150

0 0.2 0.4 0.6 0.8 1

ARA, 300 oC, 1x10-3 s-1

TMT3, 300 oC, 1x10-3 s-1

True stress, MPa

True strain

圖 3-5 ARA 試片與 TMT3 試片,於 550 oC 及 1x10-3 s-1的條件下,兩者拉伸真實應力 應變曲線之比較圖。

0 5 10 15 20

0 0.5 1 1.5 2

ARA, 550 oC, 1x10-3 s-1

TMT3, 550 oC, 1x10-3 s-1

True stress, MPa

True strain

圖 3-6 TMT3 試片在 250 oC 時,伸長量與初始應變速率之關係。

0 100 200 300 400 500 600

10-5 10-4 10-3 10-2 10-1

250 oC, TMT3

Tensile elongation, %

Initial strain rate, s-1

圖 3-7 TMT3 試片在固定應變速率為 1x10-3 s-1的條件下,伸長量與拉伸溫度之關係。

0 100 200 300 400 500 600

100 200 300 400 500 600

TMT3

Tensile elongation, %

Tensile temperature, oC

圖 3-8 TMT3 試片在固定應變速率為 1x10-3 s-1的條件下,抗拉強度與拉伸溫度之關係。

0 50 100 150 200

100 200 300 400 500 600

TMT3, 1x10-3 s-1

UTS, MPa

Tensile temperature, oC

圖 3-9 TMT3 試片分別在 200、250、300、350、500 及 550 oC,及應變速率為 1x10-3 s-1 的條件下,拉伸之真實應變應力曲線圖。

0 50 100 150 200 250

0 0.5 1 1.5 2

200 oC, 1x10-3 s-1

250 oC, 1x10-3 s-1 300 oC, 1x10-3 s-1

350 oC, 1x10-3 s-1

500 oC, 1x10-3 s-1 550 oC, 1x10-3 s-1

True stress, MPa

True strain

圖 3-10 TMT3 試片分別在 100、150、200、250 oC 退火 30 分鐘後,在於 250 oC 及 1x10-3 s-1的條件下,與未經退火 TMT3 試片之拉伸真實應力應變曲線比較圖。

0 50 100 150

0 0.5 1 1.5 2

As-TMT3

Annealed at 100 oC Annealed at 150 oC Annealed at 200 oC Annealed at 250 oC

True stress, MPa

True strain

圖 3-11 TMT3 試片在 250 oC 分別恆溫靜置 0 ~ 60 分鐘後,再於 1x10-3 s-1的測試條件 下,所得之拉伸真實應力應變曲線比較圖。

0 50 100 150

0 0.5 1 1.5 2

As-TMT3 Held 10 min Held 20 min Held 30 min Held 40 min Held 50 min Held 60 min

True stress, MPa

True strain

圖 3-15 TMT1、TMT2、TMT3 及 TMT4 試片,在固定應變速率為 1x10-3 s-1或 8x10-4 s-1 的測試條件下,伸長量與拉伸溫度之關係圖。

0 100 200 300 400 500 600

100 200 300 400 500 600

TMT1 TMT2 TMT3

Tensile elongation, %

TMT4

Tensile temperature, oC

圖 3-16 TMT1、TMT2、TMT3 及 TMT4 試片,在固定拉伸溫度為 250 oC 的條件下,

伸長量與起始應變速率之關係圖。

0 100 200 300 400 500 600

10-5 10-4 10-3 10-2 10-1

TMT1 TMT2 TMT3 TMT4

Tensile elongation, %

Initial strain rate, s-1