• 沒有找到結果。

1. 未來可將電池求解範圍擴大為陽極觸媒層、質子交換膜、陰極觸 媒層三層,更接近實際的燃料電池結構。

2. 重組器所排放之氣體中,二氧化碳對電池性能的衰退,僅次於一 氧化碳,未來可加入二氧化碳之毒化模式。

3. 可將 Pt/Ru雙元合金,提高一氧化碳容忍度之數學模式加入,如此

能更加符合目前解決一氧化碳毒化之處理方式。

參 考 文 獻

1. Yoshihiro, H., “Highlight of the Issue:New Energy Option for the 21st Century,” AAPPS Bulletin, Vol.13, No. 3, pp.2-6, 2003.

2. Larminie, J. and Dicks, A., Fuel Cell Systems Explained, John Wiley

& Sons, LTD, 2001.

3. Okada, T. and Nakamura, N., “Ion and Water Transport Characteristics in Membranes for Polymer Electrolyte Fuel Cells Containing H+ and Ca2+ Cations,” J. Electrochem. Soc., Vol. 144, pp.

2744-2750, 1997.

4. Okada, T., Moller-Holst, S., Gorseth, O. and Kjelstrup, S., “Transport and Equilibrium Properties of Nafion Membranes with H+ and Na+ Ions,” J. Electroanal. Chem., Vol. 442, pp. 137-145, 1998.

5. Okada, T., Ayato, Y., Yuasa, M. and Sekine, I., “The Effect of Impurity Cations on the Transport Characteristics of Perfluorosulfonated Ionomer Membranes,” J. Phys. Chem. B, Vol. 103, pp. 3315-3322, 1999.

6. Okada, T., Satou, H., Okuno, M. and Yuasa, M., “Ion and Water Transport Characteristies of Perfluorosulfonated Ionomer Membranes with H+ and Alkali Metal Cations,” J. Phys. Chem. B, Vol. 106, pp.

1267-1273, 2002.

7. Okada, T., Dale, J., Ayato, Y., Andreas, O., Yuasa, M. and Sekine, I.,

“Unprecedented Effect of Impurity Cations on the Oxygen Reduction Kinetics at Platinum Electrodes Covered with Perfluorinated Ionomer,”

Langmuir, Vol. 15, pp.8490-8496, 1999.

8. Okada, T., Ayato Y., Dale, J., O., Yuasa, M., Sekine, I. and Andreas, O., “Oxygen Reduction Kinetics at Platinum Electrodes Covered with

Perfluorinated Inomer in the Presence of Impurity Cations Fe3+, Ni2+

and Cu2+ ,” PCCP, Vol. 2, pp.3255-3261, 2000.

9. Okada, T., Ayato, Y., Satou, H., Yuasa, M. and Sekine, I., “The Effect of Impurity Cations on the Oxygen Reduction Kinetics at Platinum Electrodes Covered with Perfluorinated Ionomer,” J. Phys. Chem. B, Vol. 105, pp. 6980-6986, 2001.

10.Okada, T., Satou, H., Okuno, M. and Yuasa, M., “Effect of Additives on Oxygen Reduction Kinetics at the Interface between Platinum and Perfluorinated Ionomer,” Langmuir, Vol. 19, pp. 2325-2332, 2003.

11.Okada, T., “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells. Part 1. The Effect of Impurity Ions at the Anode Side on the Membrane Performances,” J. Electroanal.

Chem., Vol. 465, pp. 1-17, 1999.

12.Okada, T., “Theory for Water Management in Membranes for Polymer Electrolyte Fuel Cells. Part 2. The Effect of Impurity Ions at the Cathode Side on the Membrane Performances,” J. Electroanal.

Chem., Vol. 465, pp. 18-29, 1999.

13.Vielstich, W., Lamm, A. and Gasteiger, H. A., Handbook of Fuel Cells Fundamentals, Technology and Applications, John Wiley &

Sons, LTD, Vol. 2, 2003.

14.Urian, R. C., Gulla, A. F. and Mukerjee, S., “Electrocatalysis of Reformate Tolerance in Proton Exchange membrane Fuel Cells:Part I,” J. Electroanal. Chem., Vol. 554-555, pp. 307-324, 2003.

15.Zhang, J., Datta, R., “Sustained Potential Oscillations in Proton Exchange Membrane Fuel Cells with Pt-Ru as Anode Catalyst,” J.

Electrochem. Soc., Vol.149, pp. A1423-A1431, 2002.

16.Si, Y., Jiang, R., Lin, J. C., Kunz, H. R. and Fenton, J. M., “CO Tolerance of Carbon-Supported Platinum-Ruthenium Catalyst at Elevated Temperature and Atmospheric Pressure in a PEM Fuel Cell,”

J. Electrochem. Soc., Vol. 151, pp. A1820-A1824, 2004.

17.Zhang, J., Thampan, T. and Datta, R., “Influence of Anode Flow Rate and Cathode Oxygen Pressure on CO Poisoning Exchange Membrane Fuel Cells,” J. Electrochem. Soc., Vol. 149, pp. A765-A772, 2002.

18.Hongmei, Yu., Zhongjun, Hou., Baolian, Yi., Zhiyin, Lin.,

“Composite Anode for CO Tolerance Proton Exchange Membrane Fuel Cells,” J. Power Sourc. Vol. 105, pp. 52-57, 2002.

19.Santiago, E. I., Paganin, V. A., do Carmo, M., Gonzalez, E. R. and Ticianelli, E. A., “Studies of CO Tolerance on Modified Gas Diffusion Electrodes Containing Ruthenium Dispersed on Carbon,” J.

Electroanal. Chem., Vol. 575, pp. 53-60, 2005.

20.Qi, Z., He, C. and Kaufman, A., “Effect of CO in the Anode Fuel on the Performance of PEM Feul Cell Cathode,” J. Power Sourc., Vol.

111, pp.239-247, 2002.

21.Jusys, Z., Kaiser, J. and Behm, R. J., “Simulated Air Bleed Oxidation of Adsorbed CO on Carbon Supported Pt,” J. Electroanal. Chem., Vol.

554-555, pp. 427-437, 2003.

22.Adock, P. A., Pacheco, S. V., Norman, K. M. and Uribe, F. A.,

“Transient Metal Oxides as Reconfigured Fuel Cell Anode Catalysts for Improved CO Tolerance:Polarization Data,” J. Electrochem. Soc., Vol. 152, pp. A459-A466., 2005.

23.Thomason, A. H., Lalk, T. R. and Appleby, A. J., “Effect of Current Pulsing and Self-Oxidation on the CO Tolerance of a PEM Fuel Cell,”

J. Power Sourc., Vol. 135, pp. 204-211, 2004.

24.Carrete, L. P. L., Friedrich, K. A., Hubel, M. and Stimming, U.,

“Improvement of CO Tolerance of Proton Exchange Membrane Fuel Cells by a Pulsing Technique,” Phys. Chem., Vol. 3, pp. 320-324, 2001.

25.Yi, J. S., and Nguyen, T. V., “Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors,” J. Electrochem. Soc., Vol. 146(1), pp.

38-45, 1999.

26.Bernardi, D. M., and Verbrugge, M. W., “Mathematical Model of a Gas Diffusion Electrode Bounded to a Polymer Electrolyte,” J.

Electrochem. Soc., Vol. 37, pp. 1151-1163 , 1991.

27.Bernardi, D. M., and Verbrugge, M. W., “Mathematical Model of a Solid Polymer Electrolyte Fuel Cell,” J. Electrochem. Soc., Vol. 139, pp. 2477-2490., 1992.

28.Wang, Z. H., Wang, C. Y., and Chen, K.S., “Two-Phase Flow and Transport in the Air Cathode for Proton Exchange Membrane Fuel Cells,” J. Power Sourc., Vol. 94, pp.40-50., 2001.

29.You, L., and Liu, H., “A Two-Phase Flow and Transport Model for the Cathode of PEM Fuel Cells,” Int. J. Heat Mass Transfer., Vol. 45, pp.2277-2287., 2002.

30.Springer, T. E., Rockward, T., Zawodzinski, T. A. and Gottesfeld, S.,

“Model for Polymer Electrolyte Fuel Cell Operation on Reformate Feed,” J. Electrochem. Soc., Vol. 148, pp. A11-A23, 2001.

31.Chan, S. H., Goh, S. K., Jiang, S. P., “A mathematical model of polymer electrolyte fuel cell with anode CO kinetics,” Electrochim.

Acta., Vol. 48, pp. 1905-1919., 2003.

32.Bhatia, K. K., and Wang, C. Y., “Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed,” Electrochim. Acta., Vol. 49, pp. 2333-2341., 2004.

33.Halseid R, Preben J. S., Vie, Tunold, R., “ Influence of Ammonium on Conductivity and Water Content of Nafion 117 Membranes,” J.

Electroshem. Soc., Vol. 151, pp. A381-A388, 2004.

34.Uribe F.A., Gottesfeld S., Zawodzinski T. A., “ Effect of Ammonia as Potential Fuel Impurity on Proton Exchange Membrane Fuel Cell Performance,” J. Electrochem. Soc., Vol. 149, pp. A293-A296, 2002.

35.Gottesfeld S., and Pafford J., “A New Approach to the Problem of Carbon Monoxide Poisoning in Fuel Cells Operating at Low Temperature,” J. Electroshem. Soc., Vol. 135, pp. 2651-2652, 1988.

36.Oetjen H.F., Schmit V.M., Stimming U., and Trila F., “Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas,” J. Electrochem. Soc., Vol. 143, pp. 3838-3842, 1996.

相關文件