• 沒有找到結果。

在教學建議上,就概念來說,有關物質性質的概念,雖然無法由日常現象觀 察,但透過學習或者表徵的閱讀後,可能較容易概念改變,然而,有關原子與分 子觀的概念,即便教科書中包含了各種原子與分子相關的視覺表徵,但可能較不 容易被學生理解,在教學上需要被強調;而現階段學生對具有過程屬性的概念,

雖然這可能由於現階段與化學過程相關的概念較不牽涉原子與分子的複雜過 程,但在學習原子與分子之概念時,或許能夠以學生較熟悉的化學過程導入,或 者以簡單的過程符號進行原子、分子屬性的解說;學生常以物質粒子或巨觀的角 度詮釋對原子與分子進行詮釋,雖然物質粒子屬於微觀的概念,且在過去研究中 受到重視,但在教學時宜幫助學生釐清物質粒子觀與原子分子觀的異同。

就表徵來說,對學生而言,教科書中呈現的微觀表徵較為抽象,學生甚至無 法對表徵進行正確的表面性描述,或許在教學中應該強調微觀概念與適當表徵的 配合,並加強學生對微觀表徵的閱讀能力;學生對二維、二維半表徵的知覺有限

(邱美虹和傅化文,1993;廖焜熙和邱美虹,1996),已有許多研究建議以實體 模型或虛擬模型幫助學生對表徵三維資訊的認識(Copolo & Hounshell, 1995;

Tuckey & Selvaratnam, 1993; Wu, Krajcik & Soloway, 2001)。

在研究建議上,由學生閱讀微觀表徵及符號的結果推論,或許閱讀微觀表徵 及符號對學習者而言是個複雜的過程,這個過程也需要進一步的研究發現。此 外,在本章第一節中呈現的「表徵解構架構修正」,並不具有將不同能力學習者 分級或歸類的標準,是一個待確立的表徵架構,需要靠觀察或其他實徵研究印 證,學習者對表徵的理解才是表徵意義的賦予。倘若能有一個評量學習者表徵能 力的指標,將表徵能力中多維度的特徵解構並凸顯,就有可能幫助不同能力的學 習者,在不同表徵面向上的學習。

參考文獻

邱美虹、傅化文(1993)。分子模型與立體化學的解題。科學教育學刊,1(2),

161-188。

邱美虹、廖焜熙(1996)。立體化學與空間能力。化學,54(2),145-151。

廖焜熙、邱美虹(1996)。三維度視覺在技能與化學學習上的探討。科學教育月 刊,189,14-36。

Ainsworth, S.E (2006) DeFT: A conceptual framework for learning with multiple representations. Learning and Instruction, 16(3), 183-198.

Amman, K., & Cetina, K. (1990). The fixation of (visual) evidence. In M. Lynch & S.

Woolgar (Eds.), Representation in scientific practice (pp. 85-122). Cambridge, MA: MIT Press.

Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students' understanding of chemical change. Journal of Research in Science Teaching, 41(4), 317-337.

Ardac, D., & Akaygun, S. (2005). Using static and dynamic visuals to represent chemical change at molecular level. International Journal of Science Education, 27(11), 1269–1298.

Barnea, N. (2000). Teaching and learning about chemistry and modelling with a computer managed modelling system. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education. Dordrecht: Kluwer Academic.

Benson, D. L. (1993). Students’ preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597.

Ben-Zvi, R., Eylon, B., & Silberstein, J. (1986). Is an atom of copper malleable?

Journal of Chemical Education, 63, 64-66.

Boulter, C., & Buckley, B. (2000). Constructing a typology of models for science education. In J. Gilbert & C. Boulter (Eds.), Developing models in science education. (pp. 3-17). Netherlands: Kluwer.

Bowen, G. M., & Roth, W.-M. (2005). Data and graph interpretation practices among preservice science teachers. Journal of Research in Science Teaching, 42 (10), 1063-1088.

Briggs, M., & G. Bodner. (2007). A model of molecular visualization. In J. K. Gilbert (Ed.), Visualization in science education. (2nd ed.). Dordrecht: Springer.

Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing models in science education (pp. 119-135): Netherlands:

Kluwer.

Chandrasegaran, AL, Treagust, D. F. & Mocerino, M. (2008). An evaluation of a teaching intervention to promote students’ ability to use multiple levels of representation when describing and explaining chemical reactions. Research in Science Education, 38(2), 237-248.

Chi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121-152.

Cokelez, A., Dumon, A., & Taber, K. S. (2008). Upper secondary French students, chemical transformations and the “Register of models”. International Journal of Science Education, 30(6), 807-836.

Copolo, C. F., & Hounshell, P. B. (1995). Using three-dimensional models to teach molecular structures in high school chemistry. Journal of Science Education and Technology, 4, 295–305.

diSessa, A. A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: Meta-representational expertise in children. Journal of Mathematical Behavior, 10, 117-160.

Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In R. J. Sterberg & J. E. Davidson (Eds.) The Nature of Insight.

Cambridge, MA: MIT Press.

Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Kit of factor-referenced cognitive tests. NJ: Princeton.

Ferk, V., Vrtacnik, M., Blejec A. & Gril A. (2003). Students’ understanding of molecular structure representations. International Journal of Science Education, 25(10), 1227–1245.

Gabel, D.L. (1999). Improving teaching and learning through chemistry education research: A look to the future. Journal of Chemical Education, 76, 548-554.

Gentner, D. & Stevens, A.(1983). Mental Models. Hillsdale, NJ: Erlbaum.

Gilbert, J., & Priest, M. (1997). Models and discourse: A primary school science class visit to a museum. Science Education, 81, 749-762.

Gilbert, J. K. (2007). Visualization: A metacognitive skill in science and science education. In Gilbert, J. K. (2nd ed.), Visualization in science education.

Dordrecht: Springer.

Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In Gilbert, J. K., Reiner, M., Nakhleh, M. (eds.), Visualization: Theory and practice in science education. Dordrecht: Springer.

Gobert, J. D. (2005). Learning technology and cognitive theory on visualization to promote students’ science learning and literacy. In J. Gilbert (Ed.), Visualization in science education (pp. 121-146). London: Kluwer.

Cambridge: Cambridge University Press.

Goodwin, C. (1995). Seeing in Depth. Social Studies of Science. 25(2) 237-274.

Greeno, J. (1998). The situativity of knowing, learning, and research. American Psychologist, 53(1), 5-26.

Griffiths, A. K., & Preston, K. R. (1992). Grade 12 students' misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching , 29, 611-628.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.

Johnson-Laird, P. N. (2001), ‘Mental models and deduction’, Trends in Cognitive Sciences, 5(10), 434–442.

Johnstone, A.H. (1993). The development of chemistry teaching. Journal of Chemical Education , 70 (9), 701-705.

Kindfield, A. C. H. (1993/1994) Biology diagrams: Tools to think with. The Journal of the Learning Sciences, 3 , 1-36.

Kozma, R. (1991). Learning with media. Review of Educational Research, 61(2), 179-212.

Kozma, R. (2000). Students collaborating with computer models and physical experiments. In J. Roschelle & C. Hoadley (Eds.), Proceedings of the Conference on Computer-Supported Collaborative Learning 1999. Mahwah,

NJ: Erlbaum.

Kozma, R.B., Chin, E., Russell, J., & Marx, N. (2000). The roles of representations and tools in the chemistry laboratory and their implications for chemistry instruction. Journal of the Learning Sciences , 9(2), 105-143.

Kozma, R.B., & Russell, J. (1997). Multimedia and understanding: Expert and novice

Research in Science Teaching , 34, 949-968.

Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. Gilbert (Ed.), Visualization in science education. London: Kluwer. p. 121-146.

Kozma, R., & Russell, J. (2007). Students becoming chemists: Developing representational competence. In Gilbert, J. K. (2nd ed.), Visualization in science education. Dordrecht: Springer.

Krajcik, J.S. (1991). Developing students' understanding of chemical concepts. In S.M. Glynn, R.H. Yeany, & B.K. Britton (Eds.), The psychology of learning science: International perspective on the psychological foundations of technology-based learning environments (pp. 117-145). Hillsdale, NJ:

Erlbaum.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65-99.

Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation.

Cambridge: Cambridge University Press.

Lemke, J.L. (1990). Talking Science: Language, learning, and values. Norwood, NJ:

Ablex.

Lowe, R.K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13, 157-176.

Mayer, R.E., (1997). Multimedia learning: Are we asking the right questions?.

Educational Psychologist, 32 (1), 1–19.

Michalchik, V., Rosenquist, A., Kozma, R., Kreikemeier, P., Schank, P., & Coppola, B.

(2008). Representational resources for constructing shared understandings in the high school chemistry classroom. In J. Gilbert, M. Nakhleh, & M. Reiner

New York: Springer.

Nicholson, J. R., & Seddon, G. M. (1977). The understanding of pictorial spatial relationships by Nigerian secondary school students. Journal of Cross-Cultural Psychology, 8, 381–400.

Novick, S. & Nussbaum J. (1978). Junior high school pupils’ understanding of the particulate nature of matter: an interview study. Science Education, 62(3), 273-281.

Novick, S. & Nassumsbaum, J.(1981). Pupils' Understanding of the Particles Nature of Matter: A Cross-Age Study. Science Education, 65(2), 187-196.

Paivio, A. (1986). Mental representations: A dual-coding approach. New York:

Oxford University Press.

Paivio, A. (1990). Mental representations: a dual coding approach (2nd ed.). NY:

Oxford University Press.

Peterson, R.F., Treagust, D.F., & Garnett, P. (1986). Indetification of secondary students' misconception of covalant bonding and and structure concepts using a diagnostic test instrument. Research in Science Education, 16(1), 40-48.

Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human Development, 15(1), 1-12.

Rapp, D. (2007). Mental models: Theoretical issues for visualizations in science education. In Gilbert, J. K. (Ed.), Visualization in science education. Dordrecht:

Springer.

Reiber, L. (1988). The effects of computer animated elaboration strategies and practice on factual and application learning in an elementary science lesson.

Journal of Educational Computing Research, 5, 431–444.

Reiber, L. (1990). Using computer animated graphics in science instruction with

Reiber, L. (1991). Animation, incidental learning and continuing motivation. Journal of Educational Psychology, 83(3), 318–328.

Roth, W.-M. (2001). Learning science through technological design. Journal of Research in Science Teaching, 38, 768-790.

Rouse, W.B. & Morris, (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin, 100, 349–363.

Seddon, G. M., and Moore, R. G. (1986). An unexpected effect in the use of models for teaching the visualization of rotation in molecular structures. European Journal of Science Education, 8, 79–86.

Seddon, G. M., Tariq, R. H., & Dos Santos Viega, A. (1982). The visualisation of spatial transformations in diagrams of molecular structures. European Journal of Science Education, 4, 409–420.

Teichert, M. A., Tien, L. T., Anthony, S. & Rickey, D. (2008). Effects of context on students’ molecular-level ideas. International Journal of Science Education, 30(8), 1095-1114.

Tuckey, H. & Selvaratnam, M. (1993). Studies involving three-dimensional visualisation skills in chemistry: a review. Studies in Science Education, 21, 99–121.

Tufte, E. R. (1983). The Visual Display of Quantitative Information. Cheshire:

Connecticut: Graphics Press.

Vygotsky, L.S. (1980). Mind in Society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

Vygotsky. (1986). Thought and language, MIT Press, Boston.

Williamson, V. M., & Abraham, M. R. (1995). The Effects of Computer Animation on the Particulate Mental Models of College Chemistry Students. Journal of

Woolgar, S. (1990). Time and documents in researcher interaction: Some ways of making out what is happening in experimental science. In M Lynch and S.

Woolgar (Eds.), Representation in scientific practice (pp. 123-152).

Cambridge, MA: MIT Press.

Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting conceptual understanding of chemical representations: students’ use of a visualization tool in the classroom, Journal of Research in Science Teaching, 38, 821-842.

Wu, H.-K., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning, Science Education, 88, 465-492.

Yang, E., Andre, T. & Greenbowe, T. J., (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry, International Journal of Science Education, 25(3), 329–349.

附錄

附件一:概念理解測驗

試題指導範例

※請將答案欄中的選項○塗黑●作答

答案欄 例題:下列哪一種是人類必須使用複式顯微鏡才能看見 的生物?

_ 草履蟲 蚊子 杜鵑花 蝗蟲

※此題答案為,則將塗成黑色



學校:____________國中

年級:_______ 班級:_______ 座號:_______ 姓名:__________________

       

年 級 :    

班 級 :           

           座 號 :           

            

※請將答案欄中的選項○塗黑●作答

      9. 有關物質的敘述,下列哪一個錯誤?  物質是由粒子組成的  組

附件二:視覺表徵能力測驗

試題指導範例

※請將答案欄中的選項○塗黑●作答

答案欄 例題:下列哪一種是人類必須使用複式顯微鏡才能看見 的生物?

_ 草履蟲 蚊子 杜鵑花 蝗蟲

※此題答案為,則將塗成黑色



學校:____________國中

年級:_______ 班級:_______ 座號:_______ 姓名:__________________

       

年 級 :    

班 級 :           

           座 號 :           

            

※請將答案欄中的選項○塗黑●作答  

答案欄 

      16. 將等量的液體倒入不同的容器中,下列何者正確?

 液體的形狀不隨容器而改變

 液體的形狀會隨容器而改變

 液體的形狀改變與否,要視液體的種類而定

 液體的形狀改變與否,要視液體的溫度而定  

 

      17. 關於水的沸點,下列何者正確?

 在等量的水中溶解不同量的食鹽,食鹽水的沸點維持不變

 在等量的水中溶解不同量的食鹽,食鹽水的沸點就不一樣

 在等量的水中溶解等量的食鹽,食鹽水的沸點不一定相同

 純水的沸點為 100℃,食鹽水的沸點為 120℃

 

      18. 關於化學反應時的原子排列,下列何者正確?

 發生化學反應時,原子的數量不會有所增減,只是重新排列組合

 發生化學反應時,原子的數量會減少,有些原子在反應後會消失

 發生化學反應時,會產生新的原子,造成原子的數量增加

 發生化學反應時,原子的種類不會增加,但原子的數量會增加

 水分子是由不同的粒子排成直線型的

 

 





   

題組四:請將圖形分類,並解釋原因

30. 下圖 ABCD 中,哪些有可能是在表示同一種化合物?

A. B. C. D.

 ACD  AD  ABD  BD

    31 下列是化學中常用以表示化合物的圖形,哪些可以歸類為同一種化合物?

A. B. C.

D. E. F.

 BC  CE  AD  BCDF

 







   

題組六:請閱讀下列題目,並將圖形與概念做適當的配對

32. 若要表示「發生化學變化時,原子排列方式的改變情形」,下列哪一個圖形 最適合用來表達這個概念?

 

 

    33. 下圖最適合用來表達哪一個化學概念?

 化學反應中有熱量的變化,此圖為放出熱量的反應

 化學反應中有熱量的變化,此圖為吸收熱量的反應

 化學反應中有溫度的變化,此圖為溫度下降

 化學反應中有反應速率的變化,此圖為反應速率下降

 

    34. 若想要表示「分子中電子分佈的情形」,下咧哪一種圖形最適合?

   

CH

4

    35. 若想要以簡單記號的表示「分子的立體結構」,下列哪一種圖形最適合?

   

CH

4

    36. 下圖最適合用來表達哪一個化學概念?

 有的分子中,電子共用的情形相同;有的分子中,電子共用的情形不同

 無論哪一種分子,其內部電子共用的情形皆相同

 每一種分子所帶的電荷數量不同

 每一種分子的結構皆不相同  

 

     

相關文件