• 沒有找到結果。

第五章 結論與建議

第二節 建議

本章節依據實驗教學與研究結果中所發現之相關問題、及可以再進行改善的 部份提出相關的建議,以供未來研究之參考。

壹、凸透鏡成像單元教學之建議:

本研究對國中凸透鏡成像單元教學之建議包括:(1) 使用數位學習環境結合 鷹架輔助策略學習凸透鏡成像單元。(2) 教材融入遊戲化設計成分。各項之建議 分述如下:

一、使用數位學習環境結合鷹架輔助策略學習凸透鏡成像單元

由於學習者從國小剛升至國中對於自然課程為第一次接觸,對於科學實驗更 是陌生,再加上凸透鏡成像本身為較抽象的光課程單元,在在都加深了學習者學 習的認知負荷。本研究使用平板電腦所提供的虛擬資訊及實體教具所提供的實際 操作經驗,都能夠有效幫助學習者建構抽象的光概念。若再輔以鷹架策略引導提 示,則能夠使實驗操作的完成度及知識內容的吸收度更為良好。因此,由本研究 結果指出,若使用擴增實境學習環境搭配反思鷹架策略或是使用虛擬實境學習環 境搭配程序鷹架策略皆對於凸透鏡成像單元的學習有很好的幫助,學習者不管是 學習成效或是學習動機都有良好的表現。

二、教材融入遊戲化設計成分

由研究問卷發現,學習者對於將遊戲成分帶入學習內容中覺得十分有趣。對 於較枯燥乏味的記憶性質概念,例如:光的性質,凸透鏡的特性,物距、焦距等,

對於剛接觸自然科學課程的國中一年級生而言略顯煩悶。若能將遊戲的趣味性帶 入學習內容中,對於一些須記憶的概念或是須重複操作的實驗,能夠藉由遊戲的

87

規則、情境讓學習者反覆的進行學習。因此,在教材中加入一些趣味性遊戲成分,

對於學習者在學習上應有好的幫助。

貳、未來研究之建議

本研究針對未來研究方向之建議,有以下三點建議,包含:(1) 不同數位學 習環境比較。(2) 其他科學內容之應用。(3) 不同評量方式,各項之建議分述如 下:

一、不同數位學習環境比較

未來研究可以嘗試加入電腦模擬及傳統教學的比較,對於黑板講述式教學、

電腦輔助動畫教學、平板電腦遊戲教學或是與實體教具結合的擴增實境教學,哪 一種方式是最適合學習者的。由於每種教學方式都有各自的優點,黑板講述式教 學可以直接傳達學習知識;電腦輔助動畫可以提供學習者活潑的動畫體驗;平板 電腦則可以讓學習者帶著學習,不用受限於學習環境;擴增實境教學則能使學習 者透過與實體教具的互動及平板電腦提供的虛擬資訊同步學習。藉由多方不同環 境的學習比較得以讓凸透鏡成像的研究更臻完全。

二、其他科學內容之應用

本研究結果指出,不僅是運用擴增實境或是虛擬實境,對於凸透鏡成像學習 動機或是成效而言,皆有好的效果。由於擴增實境具有整合真實世界及虛擬環境 的特點,若能充分將該特點應用在其他自然實驗領域上,例如:化學分子實驗、

電磁波實驗、波的行進實驗等,應可發揮一定的正向效果。

88

三、不同評量方式

本研究之教學課程為人類每天都會接觸到卻無法觀察的光課程,研究結果雖 顯示學習者的學習成效與學習動機有好的表現,但測驗的內容終究是書本知識,

無法檢驗出其應用到日常生活中的能力。故未來研究建議可以增加不同的測驗方 式或是評量方法,希望可以讓學生確實吸收到知識內容,並且能夠應用在日常生 活中。

89

參考文獻

90 國家科學委員會專案計劃成果報告 NSC77-0111-S017-005-D。

陳均伊、張惠博、郭重吉(2004)。光反射與折射的另有概念診斷工具之發展與

91

台北市:心理出版社。

張鳳琴(1994):高雄地區公立高中學生對科學知識的本質的看法。國立師範大學 科學教育研究所碩士論文。

張春興(2004)。教育心理學-三元化取向的理論與實務。臺北市:東華書局。

董家莒(2000)。問題解決為基礎之電腦輔助教學成效。未出版之碩士論文,國立 臺灣師範大學地球科學研究所,台北。

楊明獻(2008)。改進國中理化課程教學–以「光的折射」單元為例。科學教育月 刊,306,27-42。

劉昌宏、郭重吉(1995)。教科書在國中理化教學中的應用之個案研究。科學教育,

6,89-112。

臺 灣 PISA 國 家 研 究 中 心 (2011) 。 科 學 應 試 指 南 。 取 自 http://pisa.nutn.edu.tw/download/sample_papers/2009/2011_1205_guide_science .pdf

臺 灣 PISA 國 家 研 究 中 心 (2011) 。 臺 灣 參 加 PISA 2006 成 果 報 告 。 取 自 http://pisa.nutn.edu.tw/download/2006pisa/2006PISA.pdf

臺 灣 PISA 國 家 研 究 中 心 (2011) 。 臺 灣 PISA 2009 精 簡 報 告 。 取 自 http://pisa.nutn.edu.tw/download/data/TaiwanPISA2009ShortReport.PDF

蔡福興、游光昭、蕭顯勝(2008)。從新學習遷移觀點發掘數位遊戲式學習之價值。

課程與教學季刊,11(4),237-278。

蔡承哲 (2013)。擴增實境與鷹架教學策略對高中數學空間單元學習成效與動機 之影響。國立臺灣師範大學資訊教育研究所碩士論文,未出版,臺北市。

竇一龍(2002)。高一學生凸透鏡折射成像另有架構類型與成因。國立高雄師範 大學物理研究所碩士論文。

92

英文部分

Arvanitis, T. N., Petrou, A., Knight, J. F., Savas, S., Sotiriou, S., & Gargalakos, M., (2007). Human factors and qualitative pedagogical evaluation of a mobile augmented reality system for science education used by learners with physical disabilities. Personal and Ubiquitous Computing, 13(3), 243–250.

Azuma, R. T. (1997). A survey of augmented reality. Presence-Teleoperators and Virtual Environments, 6(4), 355-385.

Barab, S. A., Scott, B., Siyahhan, S., Goldstone, R., Ingram-Goble, D., Zuiker, S. J.,

& Warren, S. (2009). Transformational play as a curricular scaffold: using videogames to support science education. Journal of Science Education Technology, 18, 305-320.

Betz, J. A. (1995). Computer games: Increase learning in an interactive

multidisciplinary environment. Journal of Educational Technology Systems, 24(2), 195-205.

Billinghurst, M. (2003). Augmented reality in education. Retrieved from:

http://www.newhorizons.org/strategies/technology/billinghurst.htm

Bodrova, E. & Leong, D. J.(1996). Tools of mind: The Vygotskian approach to early childhood education.

Cai, S., Chiang, F. K., & Wang, X. (2012). Using the augmented reality for convex imaging experiment. Science Technology, Engineering and Mathematics in Educational Conference.

Cheng, C. H., & Su, C. H. (2012). A game-based learning system for improving student’s learning effectiveness in system analysis course. Social and Behavioral Sciences, 31, 669-675.

Cheok, A. D., Hwee, G. K., Wei, L., Teo, J., Lee, T. S., Farbiz, F., & Ping, L. S.

(2004). Connecting the real world and virtual world through gaming. IFIP International Federation for Information and Communication Technology, 156, 45-50.

Coker, D. R. & White, J. (1993). Selecting and applying learning Theory to classroom teaching strategie. Education, 114(1), 77-80.

Cuendet, D., Bonnard, Q., Do-Lenh, S., & Dillenbourg, P. (2013). Designing augmented reality for the classroom. Computers & Education. Doi:

10.1016/j.compedu.2013.02.015.

Davis, E. A. (2000). Scaffolding students'knowledge integration: Prompts for reflection in KIE. International Journal of Science Education, 22(8), 819-837.

93

De Jong, T., & W.R, V. J. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179-201.

Doolittle, P. E. (1988). Understanding cooperative learning through Vygotsky's zone of proximal development.

Echeverría, A., Améstica, M., Gil, F., Nussbaum, M., Barrios, E., & Leclerc, S. (2012).

Exploring different technological platforms for supporting co-located

collaborative games in the classroom. Computers in Human Behavior, 28(4), 1170-1177.

Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics through play in an augmented reality environment. International Journal of Computer-supported Collaborative Learning, 7(3), 347–378.

Fiorentino, M., E-Uva, A., Gattullo, M., Debernardis, S., & Monno, G. (2014).

Augmented reality on large screen for interactive maintenance instructions.

Computers in Industry, 55, 428-437.

Galili, I., & Hazan, A. (2000). Learners' knowledge in optics: Interpretation, structure and analysis. International Journal of Science Education, 22(1), 57-88.

Gillispie, L., Martin, F., & Parker, M. A. (2010). Effects of a 3-D video game on middle school student achievement and attitude in mathematics. Electronic Journal of Mathematics and Technology, 4(1), 68-80.

Goldberg, F. M., & McDermott, L. C. (1986). Student Difficulties in Uderstanding Image Formation by a Plane Mirror. The Physics Teacher, 4, 72-80.

Gorghiu, L. M., Gorghiu, G., Dumitrescu, C., Olteam, R. L., Bîzoib, M., & Suducb, A.

M. (2010). Implementing virtual experiments in sciences education - challenges and experiences achieved in the frame of VccSSe comenius 2.1. project.

Procedia - Social and Behavioral Sciences, 2(2), 2952-2956.

Gorsky, P., & Finegold, M. (1994). The role of anomaly and of cognitive dissonance in restructuring students’ concepts of force. Instructional Science, 22, 75–90.

Healey, M., & Jenkins, A. (2000). Kolb's experiential learning theory and its application in geography in higher education. Journal of Geography, 99(5), 185-195.

Henderson, D., Fisher, D. & Fraser, B. (2000). Interpersonal behavior laboratory learning environments and student outcomes in senior biology classes. Journal of Research in Science Teaching, 37, 26–43.

Hill, J. R., & Hannafin, M. J. (2001). Teaching and learning in digital environments:

The resurgence of resource-based learning. Educational Technology Research and Psychology, 33(4), 875-893.

94

Huang, C. (2005). Designing high-quality interactive multimedia learning modules.

Computerized Medical Imaging and Graphics 29(1), 223-233.

Hoffman, B., & Spatariu, A. (2008). The influence of self-efficacy and metacognitive prompting on math problem-solving effciency. Contemporary Educational Psychology, 33(4), 875-893.

Ibanez, B. M., Serio, D. A., Villaran, D., & Kloos, D. C. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & Education, 71 , 1-13.

Impact on flow student experience and educational effectiveness

Imbert, N., Vignat, F., Kaewrat, C., & Boonbrahm, P. (2013). Adding physical properties to 3D models in augmented reality for realistic interactions experiments. Procedia Computer Science, 25(1)364-369.

Ke, F. F. (2008). Alternative goal structures for computer game-based learning.

Computer-Supported Collaborative Learning, 3(4), 429–445.

Kebritchi, M. & Hirumi, A. (2008). Examining the pedagogical foundations of

moderneducational computer games. Computers & Education, 51(4), 1729-1743.

Kiili, K. & Lainema, T. (2006). Evaluations of an experiential gaming model: The real game case. Proceedings of World Conference on Educational Multimedia,

Hypermedia and Telecommunications, 20, 2343-2350.

Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. New Jersey: Prentice-Hall.

Klopfer, E., & Squire, K. (2008). Environmental detectives: The development of an augmented reality platform for environmental simulations. Educational

Technology Research and Development, 56(2), 203–228.

Klopfer, E., & Sheldon, J. (2010). Augmenting your own reality: student authoring of science-based augmented reality games. New Directions for Youth Development, 128, 85–94.

Lee, K. (2012). The future of learning and training in augmented reality. InSight: A Journal of Scholarly Teaching, 7, 31-42.

Loureiro, A., & Bettencourt, T. (2014). The use of virtual environments as an extended classroom - a case study with adult learners in tertiary education.

Procedia Technology 13(1), 97-106.

Lowrie, T., & Jorgensen, R. (2011). Gender differences in students’ mathematics game playing. Computers & Education, 57(4), 2244-2248.

Lopez-Morteo, G., & Lo'pez, G. (2007). Computer support for learning mathematics:

A learning environment based on recreational learning objects. Computers &

Education, 48(4), 618-641.

95

Merchant, Z., Goetz, E. T., Kennicutt, W. K., Kwok, O. M., Cifuentes, L., & Davis, T.

J. (2012). The learner characteristics, features of desktop 3D virtual reality environments, and college chemistry instruction: A structural equation modeling analysis. Computers & Education, 59(1), 551-568.

Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented reality: A class of displays on the reality-virtuality continuum. International Society for Optics and Photonics, 20, 282-292.

Molenaar, I., Roda, C., Boxtel, C. V., & Sleegers, P. (2012). Dynamic scaffolding of socially regulated learning in a computer-based learning environment.,59(2), 515-523

Morcom, V. (2014). Scaffolding social and emotional learning in an elementary classroom community: A sociocultural perspective. International Journal of Educational Research, 67(1), 18-29.

Nikou, C., Digioia III, A. M., Blackwell, M., Jaramaz, B., & Kanade, T. (2000).

Augmented reality imaging technology for orthopaedic surgery. Operative Techniques in Orthopaedics, 10(1), 82-86.

Ohio:Merrill Kim, M. C., & Hannafin, M. J. (2011). Scaffolding problem solving in technology-enhanced learning environments (TELEs): Bridging research and theory with practice. Computer & Education, 56, 403-417.

O’Neil, H. F., Waines, R., & Baker, E. L. (2005). Classification of learning outcomes:

evidence from the computer games literature. The Curriculum Journal, 16(4), 455-474.

Prensky, M. (2007). Digital game-based learning. New York: McGraw-Hill.

Rastegarpour, H., & Marashi, P. (2012). The effect of card games and computer games on learning of chemistry concepts. Social and Behavioral Sciences, 31, 597-601.

Rienties, B., Giesbers, B., Tempelaar, D., Baker, L. S., Segers, M., & Gijselaers, W.

(2012). The role of scaffolding and motivation in CSCL. Computer & Education, 59, 893-906.

Roach, L. E. & Wandersee, J. H. (1995). Putting People Back into Science: Using Historical Vignettes. School Science and Mathematics, 95(7), 365-370.

Saorin, J. L., Torre, J. D., Martin, N., & Carbonell, C. (2013). Spatial Training using Digital Tablets. Socail and Behavioral Sciences 93(1), 1593-1597.

Shaffer, D. W., Squire, K., Halverson, R., & Gee, J. P. (2005). Video games and the future of learning. Phi Delta Kappan, 87(2), 104-111.

Simsek, M., & Dogru, I. A. (2014). Tablet Pc Based Classroom. Socail and Behavioral Sciences 116(1), 4246-4249.

Sweetser, P., & Wyeth, P. (2005). GameFlow: A model for evaluating player enjoyment in games. ACM Computer in Entertainment, 3(3), 1-24.

96

Stalbrandt, E. E., & Hössjer, A. (2006). Scaffolding and Interventions between students and teachers in a learning design sequence, FORMATEX 2006.

Tatli, Z., & Ayas, A. (2010). Virtual laboratory applications in chemistry education.

Social and Behavioral Sciences, 9, 938-942.

Von Der PüTten, A. M., Klatt, J., Broeke, S. T., McCall, R., Krämer, N. C., Wetzel, R., Blum, L., Oppermann, L., & Klatt, J. (2012). Subjective and behavioral presence measurement and interactivity in the collaborative augmented reality game TimeWarp. Interacting with Computers. 24(4), 317-325.

Wabel, S., Bockholt, U., Engelke, T., Gavish, N., Olbrich, M & Preusche, C. (2013).

An augmented reality training platform for assembly and maintenance skills.

Robotics and Autonomous Systems, 61, 398-403.

Wen, R., Tay, W., Nguyen, B., Chng, C., & Chui, C. (2014). Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Computer methods and programs in biomedicine. Doi: 10.1016/j.cmpb.2013.12.018.

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving.

Journal of Child Psychology and Psychiatry, 17(2), 89-100.

Wu, H. K., Lee, W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computer &

Education, 62, 41-49.

97

附 錄

98

99

關卡三 尋找鏡金球: 鏡心也是一個很有趣的概念哦! 請你將觀察到鏡心的特性 記錄下來吧!

答: 1. 位於_____________點

2. 光經過_________________不變

關卡四 尋找物金球: 什麼是物距呢?,請你將觀察到物距的特性記錄下來吧!

答: 物距為______到_______的距離

關卡五 尋找像金球: 什麼是像距呢?,請你將觀察到像距的特性記錄下來吧!

答: 像距為______到_______的距離

關卡六 尋找焦金球: 什麼是焦距呢?,請你將觀察到焦距的特性記錄下來吧!

答: 焦距為_____________到________的距離

關卡七 尋找 f 金球: 什麼是 f 呢? 只要是透鏡,都會有一個焦點,請你將觀察到 f 的特性記錄下來吧!

答: f 為__________

關卡八 尋找 2f 金球: 什麼是 2f 呢? 請你將觀察到 2f 的特性記錄下來吧!

答: 2f 為_________

100

當物距為介於一倍焦距到二倍焦距時蠟燭成像為: __________________________

101

關卡八 製作槍管

Step 1: 移動蠟燭木板到與凸透鏡距離為等於 22 cm(等於二倍焦距)時 Step 2: 觀察屏幕上的蠟燭成像

Step 3: 拿出平板電腦,先對準凸透鏡 marker 再對準蠟燭 marker

Step 3: 拿出平板電腦,先對準凸透鏡 marker 再對準蠟燭 marker