• 沒有找到結果。

第五章 結論與建議

第二節 建議

可進一步確認環孢靈 A 對於其他種類細胞株是否也有抗病毒之作 用,以及環孢靈A 下游之訊息傳遞,使其分子機制更清楚。同時可以利 用即時定量連鎖反應的方式去確認二維電泳圖譜之結果。

參考文獻

1. Detels, R., et al., Japanese encephalitis virus in Northern Taiwan, 1969-1973. Am J Trop Med Hyg, 1976. 25(3): p. 477-85.

2. Solomon, T., Recent advances in Japanese encephalitis. J Neurovirol, 2003. 9(2): p. 274-83.

3. Butrapet, S., et al., Neutralizing mechanism of a monoclonal antibody against Japanese encephalitis virus glycoprotein E. Am J Trop Med Hyg, 1998. 58(4): p. 389-98.

4. Fan, W.F. and P.W. Mason, Membrane association and secretion of the Japanese encephalitis virus NS1 protein from cells expressing NS1 cDNA. Virology, 1990. 177(2): p. 470-6.

5. Jan, L.R., et al., Processing of Japanese encephalitis virus non-structural proteins: NS2B-NS3 complex and heterologous proteases. J Gen Virol, 1995. 76 ( Pt 3): p. 573-80.

6. Wengler, G., The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology, 1993. 197(1): p. 265-73.

7. Koch, J.O. and R. Bartenschlager, Modulation of hepatitis C virus NS5A hyperphosphorylation by nonstructural proteins NS3, NS4A, and NS4B. J Virol, 1999. 73(9): p. 7138-46.

8. Khromykh, A.A., P.L. Sedlak, and E.G. Westaway,

trans-Complementation analysis of the flavivirus Kunjin ns5 gene reveals an essential role for translation of its N-terminal half in RNA replication. J Virol, 1999. 73(11): p. 9247-55.

9. Lindenbach, B.D. and C.M. Rice, Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol, 1999. 73(6): p. 4611-21.

10. Bartholomeusz, A. and P. Thompson, Flaviviridae polymerase and RNA replication. J Viral Hepat, 1999. 6(4): p. 261-70.

11. Guyatt, K.J., E.G. Westaway, and A.A. Khromykh, Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods, 2001.

92(1): p. 37-44.

12. Park, G.S., et al., Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the

RNA-dependent RNA polymerase domain. J Virol, 2007. 81(13): p.

6936-46.

13. Hase, T., D.R. Dubois, and P.L. Summers, Comparative study of mouse brains infected with Japanese encephalitis virus by

intracerebral or intraperitoneal inoculation. Int J Exp Pathol, 1990.

71(6): p. 857-69.

14. Chaturvedi, U.C., et al., Breakdown of the blood-brain barrier during dengue virus infection of mice. J Gen Virol, 1991. 72 ( Pt 4): p.

859-66.

15. Khanna, N., et al., Neutrophil chemotactic factor produced by Japanese encephalitis virus stimulated macrophages. Clin Exp Immunol, 1991. 86(2): p. 299-303.

16. Shen, J., et al., Early E-selectin, VCAM-1, ICAM-1, and late major histocompatibility complex antigen induction on human endothelial cells by flavivirus and comodulation of adhesion molecule expression by immune cytokines. J Virol, 1997. 71(12): p. 9323-32.

17. Lindenbach, B.D., and Rice, C. M., Flaviviridae: The viruses and their replication. Fields Virology, 2001. Vol. 1, pp. 991-1041.

18. Ghosh, S.N., et al., Protective effect of 6-MFA, a fungal interferon inducer against Japanese encephalitis virus in bonnet macaques.

Indian J Med Res, 1990. 91: p. 408-13.

19. Hasegawa, H., Y. Satake, and Y. Kobayashi, Effect of cytokines on Japanese encephalitis virus production by human monocytes.

Microbiol Immunol, 1990. 34(5): p. 459-66.

20. Hughes, J.A., L.R. Brown, and A.J. Ferro, Expression of the cloned coliphage T3 S-adenosylmethionine hydrolase gene inhibits DNA methylation and polyamine biosynthesis in Escherichia coli. J Bacteriol, 1987. 169(8): p. 3625-32.

21. Diamond, M.S. and E. Harris, Interferon inhibits dengue virus infection by preventing translation of viral RNA through a

PKR-independent mechanism. Virology, 2001. 289(2): p. 297-311.

22. Belardelli, F. and I. Gresser, The neglected role of type I interferon in the T-cell response: implications for its clinical use. Immunol Today, 1996. 17(8): p. 369-72.

23. Goodbourn, S., L. Didcock, and R.E. Randall, Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures. J Gen Virol, 2000. 81(Pt 10): p. 2341-64.

24. Katze, M.G., Y. He, and M. Gale, Jr., Viruses and interferon: a fight for supremacy. Nat Rev Immunol, 2002. 2(9): p. 675-87.

25. Munoz-Jordan, J.L., et al., Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A, 2003. 100(24): p. 14333-8.

26. Guo, J.T., J. Hayashi, and C. Seeger, West Nile virus inhibits the signal transduction pathway of alpha interferon. J Virol, 2005. 79(3):

p. 1343-50.

27. Best, S.M., et al., Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol, 2005. 79(20): p. 12828-39.

28. Fischer, G., et al., Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature, 1989. 337(6206): p. 476-8.

29. Luban, J., et al., Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell, 1993. 73(6): p. 1067-78.

30. Starzl, T.E., et al., The use of cyclosporin A and prednisone in cadaver kidney transplantation. Surg Gynecol Obstet, 1980. 151(1): p. 17-26.

31. Watashi, K., et al., Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatology, 2003. 38(5): p.

1282-8.

32. Samuel, C.E., Antiviral actions of interferons. Clin Microbiol Rev, 2001. 14(4): p. 778-809, table of contents.

33. Didcock, L., et al., The V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol, 1999. 73(12): p. 9928-33.

34. Kubota, T., et al., C terminal CYS-RICH region of mumps virus structural V protein correlates with block of interferon alpha and gamma signal transduction pathway through decrease of STAT 1-alpha. Biochem Biophys Res Commun, 2001. 283(1): p. 255-9.

35. Parisien, J.P., et al., The V protein of human parainfluenza virus 2 antagonizes type I interferon responses by destabilizing signal

transducer and activator of transcription 2. Virology, 2001. 283(2): p.

230-9.

36. Lin, R.J., et al., Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection. J Virol, 2004. 78(17): p. 9285-94.

37. Lin, R.J., et al., Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine

phosphatase-mediated mechanism. J Virol, 2006. 80(12): p. 5908-18.

38. Watashi, K., et al., Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell, 2005. 19(1): p. 111-22.

39. Yang, F., et al., Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro. J Virol, 2008. 82(11): p. 5269-78.

40. Liu, J., et al., Calcineurin is a common target of

cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell, 1991.

66(4): p. 807-15.

41. Ptak, R.G., et al., Inhibition of human immunodeficiency virus type 1 replication in human cells by Debio-025, a novel cyclophilin binding agent. Antimicrob Agents Chemother, 2008. 52(4): p. 1302-17.

42. Flisiak, R., et al., The cyclophilin inhibitor Debio-025 shows potent anti-hepatitis C effect in patients coinfected with hepatitis C and human immunodeficiency virus. Hepatology, 2008. 47(3): p. 817-26.

43. Pushkarsky, T., et al., CD147 stimulates HIV-1 infection in a

signal-independent fashion. Biochem Biophys Res Commun, 2007.

363(3): p. 495-9.

44. Tsao, C.H., et al., Japanese encephalitis virus infection activates caspase-8 and -9 in a FADD-independent and

mitochondrion-dependent manner. J Gen Virol, 2008. 89(Pt 8): p.

1930-41.

Fig.1

圖一、利用TE671 細胞表現 NS5 蛋白

A.將 NS5 蛋白序列構築在含有 Flag-tag 的 PCR3.1 上面,並且轉染進 TE671 細胞內表現。B.將空載體對照細胞及 NS5 蛋白表現細胞收下,利 用西方墨點法,Anti-Flag 做為一抗、Anti-AP 為二抗呈色,於 103 kDa 的位置有NS5 蛋白表現。

Fig.2

圖二、利用IFN-β 測試 NS5 蛋白對干擾素的抗性

利用穩定表現空載體對照細胞及NS5 蛋白表現細胞培養至 6 well plate 中,於培養液加入IFN-β 1000 U/ml 處理,經過 0、24、48 小時於顯微 鏡下觀察細胞,發現NS5 蛋白表現的細胞對干擾素有抵抗性。

NS5

PCR3.1 NS5 PCR3.1 PCR3.1 NS5

1000 U 500 U Control

48 hours 24 hours

0 hour

Fig.3

圖三、利用流式細胞儀觀察細胞凋亡現象

利用空載體對照細胞及NS5 蛋白表現細胞培養至 6 well plate,加入 IFN-β 1000 U/ml、48 小時後,進行 Annexin V FITC 與 PI 雙染,利用 Flow cytometry 分析螢光反應。

Annexin V FITC

Mock

PCR3.1 PCR3.1-NS5

PCR3.1+IFN β PCR3.1-NS5+IFN β

PI

TE671 PCR3.1/PCR2.1-NS5 cells treated by IFN beta

0

%Percentage of cell apoptosis

-IFN +IFN

Fig.4

圖四、以西方墨點法觀察Caspase-9 之表現

利用空載體對照細胞及NS5 蛋白表現細胞加入不同濃度干擾素 48 小時 處理後所收集下的蛋白,利用西方墨點法去觀察Caspase-9 之表現。

PCR3.1 PCR3.1-NS5 IFN-β

(u/ml)

0 250 500 1000 0 250 500 1000

Pre-caspase

Activated- caspase9 β-actin

Fig.5

圖五、利用冷光報導測試NS5 蛋白表現細胞經 IFN-β 處理後對 ISRE 活性之影響

利用穩定表現空載體對照細胞及NS5 蛋白表現細胞培養至 6 well plate,

將pISRE-Luc 與 pRunilla-Luc 的冷光報導基因以 9:1 的比例轉染進細胞 中,待48 小時培養之後,於培養液中加入 IFN-β 3000 U/ml、4 小時,

利用冷光儀所得的數值以pISRE-Luc/pRunilla-Luc 呈現。

TE671 ISRE+IFN beta

0.00

Relatived Luciferase activity

-IFN beta +IFN beta

Fig.6

圖六、利用冷光報導測試NS5 蛋白細胞經 IFN-β 處理後對 NF-κB 活 性之影響

利用穩定表現空載體對照細胞及NS5 蛋白表現細胞培養至 6 well plate,

將pNF-κB-Luc 與 pRunilla-Luc 的冷光報導基因以 9:1 的比例轉染進細胞 中,待48 小時培養之後,於培養液中加入 IFN-β 3000 U/ml、4 小時,

利用冷光儀所得的數值以pNF-κB-Luc/pRunilla-Luc 呈現。

TE671 NF kB+IFN beta

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

PCR3.1-FLAG PCR3.1-FLAG-NS5

Relatived Luciferase activity

-IFN beta +IFN beta

Fig.7

圖七、以即時定量連鎖反應測試NS5 對細胞激素與干擾素下游基因表現 之影響

將空載體對照細胞及NS5 蛋白表現細胞培養在 25 T 培養瓶中,於培養 液中加入IFN-β 1000U/ml、8 小時,將細胞收下並萃取細胞 RNA,並反 轉錄成cDNA 後,利用 Real time PCR 分析後以△△Ct 值(Cycle threshold value)呈現(△△Ct=(Ct. treated-Ct. GAPDH)-(Ct. untreated-Ct.

GAPDH)),數值越高代表細胞內表現量越低。

0 0.5 1 1.5 2 2.5

IL-6 IRF-3 PKR OAS

Relative RNA Expression

PCR3.1 PCR3.1-NS5

Fig.8

Fig.9

Fig.10

Fig.11

Fig.12

圖十二、Spot 24. Cyclophilin A

利用MALDI-TOF 鑑定蛋白再經由 MASCOT database 分析比對。

PCR3.1 (-) IFN beta

PCR3.1 (+) IFN beta

PCR3.1-NS5 (-) IFN beta

PCR3.1-NS5 (+) IFN beta

Fig.13

圖十三、確認Cyclophilin A 在空載體對照細胞及 NS5 蛋白表現細胞的 表現

將空載體對照細胞及NS5 蛋白表現細胞於培養液中加入 IFN-β 0、250、

500、1000 U/ml,經過 24、48 小時之後,把細胞收下並處理蛋白,利用 西方墨點法以及壓X 光片呈色方式呈現。

Cyclophilin A GAPDH Beta actin

PCR3.1 PCR3.1-NS5

0 250 500 1000 0 250 500 1000

24hrs

Cyclophilin A GAPDH Beta actin

48hrs

IFN-β (U/ml)

Fig.14

圖十四、利用Cyclosporin A 做為抑制劑測試 ISRE 啟動子活性

利用穩定表現空載體對照細胞及NS5 蛋白表現細胞培養至 6 well plate,

將pISRE-Luc 與 pRunilla-Luc 的冷光報導基因以 9:1 的比例轉染進細胞 中,待48 小時培養之後,於培養液中分別加入四組濃度:IFN-β 0 U/ml+

CsA 0 ng/ml、IFN-β 3000 U/ml+ CsA 0 ng/ml、IFN-β 0 U/ml+ CsA 2000 ng/ml、IFN-β 3000 U/ml+ CsA 2000 ng/ml,4 小時,利用冷光儀所得的 數值以pISRE-Luc/pRunilla-Luc 呈現。

TE671 PCR3.1/PCR3.1-NS5 cells ISRE treated with IFN beta and Cyclosporin A

0

Relatived Luciferase activity

IFN 0U/ml+CsA 0ng/ml

IFN 3000U/ml+CsA 0ng/ml

IFN 0U/ml+CsA 2000ng/ml

IFN 3000U/ml+CsA 2000ng/ml

Fig.15

圖十五、Cyclosporin A 對於 Cyclophilin A 下游 ERK 分子之影響

利用空載體對照細胞及NS5 蛋白表現細胞分別加入 0 U/ml IFN-β+0 ng/ml CsA、3000 U/ml IFN-β+ 0 ng/ml CsA、0 U/ml IFN-β+2000 ng/ml CsA、3000 U/ml IFN-β+ 2000 ng/ml CsA 的藥物濃度,經過 1 小時後將 細胞收下,利用西方墨點法以及壓X 光片呈色方式呈現。

Phosphate-ERK2 Phosphate-ERK1

ERK1/2 Beta-actin

PCR3.1 PCR3.1-NS5 IFN-beta

Cyclosporin A

- + -

- - + +

- + - + - - +

Fig.16

圖十六、測試Cyclosporin A 於 TE671 細胞的抗病毒能力

將TE671 細胞培養至 25 T 培養瓶中,於培養液中加入四組濃度: (1) 0 U/ml IFN-β+ 0 ng/ml CsA、(2) 500 U/ml IFN-β+0 ng/ml CsA、(3) 0 U/ml IFN-β+ 1000 ng/ml CsA 以及(4) 500 U/ml IFN-β+ 1000 ng/ml CsA,並且

同時加入JEV T1P1 strain (m.o.i=0.5),24 小時之後觀察細胞病變情形 (Cytopathic effect)。

24 hours

Virus Virus+IFN beta

Virus+

Cyclosporin A

Virus+IFN beta+

Cyclosporin A A B

C D

Fig.17

圖十七、利用即時定量連鎖反應測試Cyclosporin A 抗病毒複製之能力 將TE671 細胞培養至 25 T 培養瓶中,於培養液中加入四組濃度: (1) 0 U/ml IFN-β+ 0 ng/ml CsA、(2) 500 U/ml IFN-β+0 ng/ml CsA、(3) 0 U/ml IFN-β+ 1000 ng/ml CsA 以及(4) 500 U/ml IFN-β+ 1000 ng/ml CsA,並且 同時加入JEV T1P1 strain (m.o.i=0.5),24 小時之後收取上清病毒液後,

萃取出病毒RNA,並利用 Real time PCR 以及設計好之 JEV T1P1 ED3 引子去測試病毒的表現量,此結果以Ct 值(Cycle thereshold value)呈現,

數值越高表示表現量越低。

TE671_JEV T1P1_treated IFN-beta and Cyclosporin A

20 21 22 23 24 25 26

virus virus+IFN Virus+CsA Virus+IFN+CsA

Ct value

24 hours

Fig.18

圖十八、利用流式細胞儀觀察Cyclosporin A 抑制病毒誘導之細胞凋亡 現象

將TE671 細胞培養至 25 T 培養瓶中,於培養液中加入四組濃度: (1) 0 U/ml IFN-β+ 0 ng/ml CsA、(2) 500 U/ml IFN-β+0 ng/ml CsA、(3) 0 U/ml IFN-β+ 1000 ng/ml CsA 以及(4) 500 U/ml IFN-β+ 1000 ng/ml CsA,並且

同時加入JEV T1P1 strain (m.o.i=0.5),24 小時之後將細胞收下,經由 Annexin V FITC-PI 雙染色處理後利用流式細胞儀分析細胞凋亡情形。

control

Virus Virus+IFN-β Virus+CsA Virus+IFN-β+CsA

Annexin V FITC

PI

3.2%

28.7% 13.2% 11.1% 6.5%

Fig.19

圖十九、藉由病毒蝕斑觀察Cyclosporin A 於 BHK-21 細胞抗病毒之情

將 BHK-21 細胞培養至六孔盤中,分別加入以下藥物濃度:(1) 500 U/ml IFN-β,(2) 500 ng/ml、1000 ng/ml CsA,(3) 500 U/ml IFN-β + 500ng/ml CsA、500 U/ml IFN-β + 1000ng/ml CsA,感染病毒 100 PFU/ml,48 小時 後觀察病毒蝕斑的情形。

virus IFN-β Virus+CsA Virus+IFN+CsA BHK-21 plaque assay

0

virus titers (1.E+02 PFU/ml)

virus

BHK-21 plaque assay

0

virus titers (1.E+02 PFU/ml)

virus

Fig.20

Plaque inhibtion (%)

表 1-1 Western blot 1.5M Tris-base (pH8.8)

45.4g tris-base add ddH2O 250ml pH=8.8

0.5M Tris-HCl (pH6.8)

7.88gtris-HCl,dd ddH2O 100ml,pH=6.8

10% SDS

10g SDS sodium dodecyl sulfate ,add ddH2O to 100ml

APS 10% ammonium persulfate 1g/10ml ddH2O

Stacking gel(4%)

ddH2O 1.35ml ,30%Acy/Bis 0.27ml,0.5M

Tris-HCl (pH6.8)0.55ml, APS10% 22.5μl,10%

SDS 22.5μl,TEMED 3.5μl

separating gel (10%)

ddH2O 4.8ml ,30 % Acy/Bis 4.2ml,1.5M

Tris-base (pH8.8)3.0ml, APS 10% 120μl,10%

SDS 120μl,TEMED 6.5μl

2x sample

loading buffer

glyceol 2.5 ml , 2-mercaptoethanol 100μl, 10% SDS 2 ml, 0.5 M Tris-HCl 1.25 ml, pH6.8, 0.5% (W/V)bromophenyl blue 0.2ml, ddH2O

3.55 ml , glycerol 2.5ml

running 或 separation buffer

10X : 30g tris-base,144g glycine,10%

SDS100ml add ddH2O to 1L

1X :25mM tris-base,250mM glycine,0.1%SDS Coommassie

brilliant blue 染色液

40%methanol ,10% acetic acid, 0.1%

Coommassie brilliant bluer-250 Destain solution 40%methanol ,10% acetic acid

Transfer buffer

8.72g tris-base,4.4g glycine, add ddH2O to 1.5L, pH 8.4,add methanol 300ml,10% SDS 5.6ml store at 4℃.

10x TBS(Tris

buffer saline) 200 mM Tris-HCl, pH 7.5, 5 M NaCl 1x TBST

(wash solution)1 X TBS cotaining 0.1% Tween-20 5% skim milk 2.5g skim milk/50ml TBST

表 1-2 Protein concentration detection

Protein Standard bovine serum albumin(1 g/ul)

Protein assay dye

Bio-RAD Protein assay dye reagent oncentrate, 450 ml

表 2-1 蛋白質體學分析之差異性蛋白

Spot

ID Protein Identification Mascot

score MW / pI

2 Inosine-5'-monophosphate

dehydrogenase 2 451 55.8/6.44 11 35 1 3.7 4.16 0.88

3 D-3-phosphoglycerate

dehydrogenase 424 56.6/6.29 13 33 1 3.69 0.01 0.01

4 Heterogeneous nuclear

ribonucleoprotein H3 94 36.9/6.37 3 13 1 1.67 0.72 0.01

5 60 kDa heat shock protein,

mitochondrial precursor 1145 61/5.7 15 52 1 2.21 1.71 1.91

6 Heterogeneous nuclear

ribonucleoprotein D0 96 38.4/7.62 2 6 1 0.56 1.37 0.62

7 Heat shock protein beta-1 458 22.8/5.98 5 66 1 1.57 1.16 0.74

8 ATP synthase subunit beta,

mitochondrial precursor 302 56.5/5.26 7 31 1 1.72 0.91 0.31

9 Heterogeneous nuclear

ribonucleoprotein K 110 50.9/5.39 3 7 1 2.07 1.13 0.91

10 Protein DJ-1 141 19.9/6.33 4 24 1 1.76 0.49 0.63

11 Cofilin-1 107 18.5/8.22 2 15 1 1.49 1.22 1.17

12 T-complex protein 1 subunit beta 129 57.5/6.01 7 20 1 6.33 0.6 0.72 13 Phosphoglycerate kinase 1 361 44.6/8.30 12 40 1 1.65 1.26 1.14

14 Peroxiredoxin-1 192 22.1/8.27 4 13 1 1.59 3.2 4.68

15 Heterogeneous nuclear

ribonucleoprotein L 138 60.1/6.65 4 15 1 0.16 0.01 0.02

16 Superoxide dismutase [Mn],

mitochondrial precursor 91 24.7/8.35 2 12 1 0.23 0.4 0.11

17 Dermcidin precursor 94 11.3/6.08 2 20 1 0.27 0.01 0.01

18 Stress-induced-phosphoprotein 1 70 62.6/6.40 6 11 1 0.94 1.15 0.01

19 Fumarate hydratase, mitochondrial

precursor 81 54.6/8.85 5 10 1 0.01 0.01 0.02

20 Thioredoxin 86 11.7/4.82 1 19 1 0.59 0.27 0,01

21 Elongation factor 1-beta 254 24.7/4.50 4 32 1 1.4 0.5 0.74

22 Prohibitin 72 29.8/5.57 7 37 1 1.96 0.12 0.01

23 Fascin 79 4.75/7.71 7 79 1 3.81 11.45 2.51

24 Chain A, Cyclophilin A Complexed 119 18.09/7.82 11 68 1 1.11 1.27 3.4

25 Calreticulin precursor 101 46.89/4.3 8 24 1 1.49 5.09 0.01

26 EDAR-associated death domain 66 46.11/5.89 5 24 1 0.01 0.14 0.03 27 Triosephosphate isomerase 1 174 31.05/5.65 17 58 1 0.87 0.66 0.4

28 CDK5 regulatory subunit 58 56.88/4.68 8 18 1 0.01 0.03 0.04

29 Cyclin-I 57 42.53/8.23 6 15 1 1.08 0.22 0.07

附錄

http://pathmicro.med.sc.eduvirolflavi1.jpg

附圖 1. 日本腦炎基因體全長與 NS5 非結構蛋白

日本腦炎基因體全長為 10~11 kb,其中含有結構與非結構蛋白。而其中 NS5 蛋白佔有 905 個胺基酸,N'端具有甲基轉移酶活性,C'端則為 RNA dependent RNA polymerase domain,與病毒複製有關。

Journal of General Virology (2008), 89, 1–47

附圖 2. 產生干擾素的分子傳遞過程

以 IFN-β為例,病毒引發細胞產生干擾素之過程。

附圖 3. 第一型干擾素刺激細胞產生下游抗病毒蛋白之訊息傳遞

相關文件