• 沒有找到結果。

掃頻實作結果

第五章 實作結果

5.4 掃頻實作結果

圖 5.18 為量測掃頻 5Hz~2000Hz 之弦波電流追隨特性及由其激勵所生之加速度,

(a)未加補償器(m=0.221kg);(b)加補償器(m=0.221kg);(c)未加補償器(m=0.377kg);(d) 加補償器(m=0.377kg);(e)未加補償器(m=0.532kg);(f)加補償器(m=0.532kg),由這六個 圖可以觀察到弦波之電流追隨在低頻時都追隨良好,但在高頻時追隨電流會有些許追不 上如圖 5.18(a)、(c)、(e)所示,在加上本論文所提之全數位空白時間補償控制器後在高 頻時也能夠有良好的電流追隨如圖 5.18(b)、(d)、(f)所示。

在全頻掃描的過程中以所激勵之加速度觀察可知,其共振頻率點所激勵之加速度為 最大,在無載(m=0.221kg)、加一個負載(m=0.377kg)、加二個負載(m=0.532kg)中,以無 載(m=0.221kg)之加速度為最大,最大約可為 500m/ s2,如圖 5.18(a)、(b)所示,再者加 一個負載(m=0.377kg)之加速度最大約為 260m/ s2,如圖 5.18(c)、(d)所示,而加二個負

載(m=0.532kg)之加速度最大約為 200m/ s2,如圖 5.18(e)、(f)所示,由此可知在共振頻 率點之加速度要其振幅最大,所加負載要最輕。在高頻的部分,約在 100hz 之上加速度 就幾乎固定了,若以圖 2.10 之HIA增益圖所示知,負載愈輕,HIA之增益圖愈大,故所 激勵之加速度就愈大,反之就愈小,由圖 5.18 可知。

o

(a)未加補償器(m=0.221kg);(b)加補償器(m=0.221kg);

(c)未加補償器(m=0.377kg);(d)加補償器(m=0.377kg);

(e)未加補償器(m=0.532kg);(f)加補償器(m=0.532kg)

第六章 結論

現今社會對工業產品的品質要求日趨嚴苛,其大型電氣元件及機械耐震能力須有適 當的測試設備及檢測規範。而統傳的振動機測試系統主要是由線性功率放大器予以供電 激勵,優點是諧波小,缺點是效率低、體積大,重量重。因此本論文就是要改善其缺點,

利用第五章所提的硬體電路架構和 TI 的 TMS320F2812 DSP 模組電路以全數位化來設計 控制器,使其達到和線性功率放大電路有其同樣的良好輸出電流及所激勵之加速度。

為了達到良好的加速度及電流追隨性能,首先必需先瞭解電動式振動機的工作原 理,進而推導及估測其動態模式,導出其主導方程式,再利用 PSIM 模擬軟體,進行模 擬、測試後,才實作。本論文採用電流控制 PWM 切換控制技巧,並應用迴授 PI 控制器 及空白時間補償控制器來達成目標。

將硬體電路架構及以 TI 的 TMS320F2812 DSP 模組電路以全數位化來設計控制器實 際應用於振動機之振動測試,結果可顯示出電流追隨性能及其所激勵之加速度特性均尚 稱良好,故具有取代其傳統線性功率放大器之能力。

參考文獻

A. Electrodyanmic Shaker and Vibration Test

[1] C. M. Harris, Shock and Vibration Handbook, New York:McGraw-Hill, 1998.

[2] G. Buzdugan, E. Mihailescu, and M. Rades, Vibration Measure. Boston, MA: Nijhoff, 1986.

[3] R. Fair and H. R. Bolton, “Analysis and design of electromagnetic moving coil vibration generators,” in Proceedings Sixth International Conference on Electrical Machines and Drives, Oxford, UK, pp.529-534, 1993.

[4] K. G. McConnell, Vibration Testing-Theory and Practice, New York:John Wiley &

Sons, 1995.

[5] S. S. Rao, Mechanical vibrations, New York:Addison-Wesley, 1995.

[6] R. Fair and H. R. Bolton, “Analysis and design of electromagnetic moving coil vibration generators,” in Proceedings Sixth International Conference on Electrical Machines and Drives, Oxford, UK, pp.529-534, 1993.

[7] S. L. Dane, T. Colosi, I. Vadan and H. Balan, “Computational aspects of electrodynamic vibrators,” in Proceedings Mediterranean Electrotechnical Conference, Antalya Turkey, pp. 1073-1076, 1994.

[8] H. M. Macdonald, T. C. Green and B. W. Williams, “Analysis and control of a moving coil electrodynamic actuator,” in Proceedings 19th Annual Conference on IEEE Industrial Electronics, Maui, MI, USA, pp.2184-2189, 1993.

[9] S. Tustain, “Shock testing using electrodynamic vibration generators,” Noise &

Vibration Worldwide, Vol. 21, Iss. 10, pp. 14-17, 1990.

B. Switching-Mode Power Amplifier and Current Tracking Control

[10] John Salmon, Liping Wang, Nouman Noor, and A. W. Krieger, “A Carrier-Based

Current-Error Using Internal Feedback of the PWM Signals,” IEEE TRANSACTIONS ON POWER ELECTRONICS, Vol. 22, No. 5, pp. 1708-1718, 2007.

[11] Ruifang Liu, Chris Chunting Mi, and David Wenzhong Gao, “Modeling of Eddy-Current Loss of Electrical Machines and Transformers Operated by Pulsewidth-Modulated Inverters,” IEEE TRANSACTIONS ON MAGNETICS, Vol. 44, No. 8, pp. 2021-2028, 2008.

[12] Thin-Huo Chen and Chang-Ming Liaw, “Vibration Acceleration Control of an Inverter-Fed Electrodynamic Shaker,” IEEE/ASME TRANSACTIONS ON MECHATRONICS, Vol. 4, No. 1, MARCH 1999.

[13] T. H. Chen, K. C. Huang and C. M. Liaw, ”High-frequency switching-mode power amplifier for shaker armature excitation,” IEE Proc.-Electr. Power Appl., Vol. 144, No.6, November 1997.

[14] J. Luan and F. C. Lee, “Design of a High Frequency Switching Amplifier for Smart Material Actuators with Improved Current mode Control,” PESC’98, 29th Annual IEEE, Vol. 1, pp. 59-64, 1998.

[15] S. M. Tenconi, R. Numeroli, L. Pittera and E. R. A. Ricerche, “High Power, Wide Bandwidth Linear Switching Amplifier Using IGBTs,” Industry Applications Society Annual Meeting, Conference Record of the 1993 IEEE, Vol. 2, pp. 778-784 1993.

[16] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with a disturbance voltage observer for a voltage source PWM inverter,” International Journal Electronics, Vol.80, No. 2, pp. 365-375, 1996.

[17] J. W. Choi and S. K. Sul, “A new compensation strategy reducing voltage/current distortion in PWM VSI systems operating with low output voltages,” IEEE Transactions on Industry Applications, Vol.31, No.5, pp. 1001-1008, 1995.

[18] Z. Lai and K. M. Smedley, “A new extension of one-cycle control and its application to switching power amplifiers,” IEEE transactions on Power Electronics, Vol. II, No. I, pp. 99-105, 1996.

[19] H. Fkuda and M. Nakaoka, “State-vector feedback control-based 100kHz carrier PWM power conditioning amplifier and its high-precision current-tracking scheme,” in Proceedings 19th International Conference on Industrial Electronics, Control and Instrumentation, Maui, Hawaii, USA, pp. 1105-1110, 1993.

[20] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics:Converters, Applications and Design, New York:John Wiley & Sons, 1995.

C. Vibration Control:Sine Vibration Control

[21] Jingang Han, Tianhao Tang, Xiaoming Wang, “A High-Performance Switching Mode Power Amplifier for Electrodynamic Shaker,” IEEE The Department of Electrical Engineering Shanghai Maritime University, pp.491-495 2005.

[22] L. Della Flora and H. A. Gr¨undling, “Adaptive Acceleration Control of an AC Power Source-Fed Electrodynamic Shaker,” IEEE Grupo de Eletrˆonica de Potˆencia e Controle, UFSM., pp. 1831-1836, 2007.

[23] Yasuhiro Uchiyama and Masayuki Fujita “Robust Acceleration and Displacement Control of Electrodynamic Shaker,” IEEE International Conference on Control Applications, pp. 746-751 2006.

[24] Shicheng Wang * , Guofu Zhai and Wenying Yang, “Study on Closed-Loop Control of Shock Process for Permanent Magnet Shaker in Particle Impact Noise Detection,”

IEEESchool of Electrical Engineering and Automation, pp. 2102-2107, 2009.

[25] Leandro Della Flora and Hilton Abilio Grundling “Acceleration Control of an Inverter-Fed Electrodynamic Shaker,” IEEE Power Electronics Specialists Conference, June 2006.

[26] Chang-Ming Liaw, Wen-Chin Yu and Thin-Huo Chen “Random Vibration Test Control of Inverter-Fed Electrodynamic Shaker,” IEEE Transactions On Industrial Electronics, Vol. 49, No. 3, June 2002.

[27] L. Della Flora and H.A. Gru‥ndling, “Time domain sinusoidal acceleration controller for an electrodynamic shaker,” IET Control Theory Appl., Vol. 2, No. 12, pp.

1044–1053, 2008.

[28] L. Mitsis and S. M. Veres, “Frequency domain self-tuning for vibration control,”

Adaptive Control IEE Colloguium, pp. 8/1-8/5, 1996.

[29] M. P. Pelletier and M. A. Underwood, “Multichannel simultaneous digital tracking filters for swept-sine vibration control,” Journal of the IES, Vol. 37, No. 5, pp. 23-29, 1994.

D. Dead Time Compensator

[30] David Leggate and Russel J. Kerkman, “Pulse Based Dead Time Compensator for PWM Voltage Inverters,” IEEE Transactions on Industrial Electronics, Vol. 44, No. 2, April 1997.

E. Analysis

[31] PSIM WEBSITE---http://www.powersimtech.com/

相關文件