• 沒有找到結果。

第五章 結論與未來展望

5.2 未來展望

由於本研究製備的生質柴油轉化率只達到 90%,因此如何提高生質 柴油之轉化率為後續努力之要點。有學者提出以 0.05 μm 薄膜分離脂肪 酸甲酯與三酸甘油酯的研究,其原理為利用醇類與脂肪酸甲酯混和均 勻,經薄膜過濾將分子量較大的三酸甘油酯分離,以獲得較高純度之脂 肪酸甲酯如圖 5-1 所示(Dube et al., 2007)。

根據 Dube 的概念,未來期望發展一套過濾裝置整合於反應系統,

藉由薄膜快速地分離生質柴油與三酸甘油酯之特點,提高生質柴油之純 度,以應用於連續式反應器之設計,嘗試建立一個較大規模的生質柴油 製程。

此外,經由重力沉降或離心方式分離生質柴油與水相物質,水相中 含有醇類與甘油,醇類回收再使用與提高甘油濃度,將可提高生質柴油 製程的價值,以獲得較大的經濟利益。

圖 5-1 薄膜過濾分離油脂與脂肪酸甲酯示意圖(Dube et al., 2007)

參考文獻

Anita A, Sastry CA, Hashim MA. Immobilization of urease using Amberlite MB-1. Bioprocess Engineering 17: 355-359, 1997.

Arroyo M, Sanchez-Montero JM, Sinisterra JV. Thermal stabilization of immobilized lipase B from Candida antarctica on different supports:

effect of water activity on enzymatic activity in organic media. Enzyme Microb Technol 24: 3-12, 1999.

Bala BK. Studies on biodiesels from transformation of vegetable oils for diesel engines. Energy Edu Sci Technol 15: 1-43, 2005.

Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding.

Analytical Biochemistry 72: 248-254, 1976.

Brzozowski AM, Derewenda U, Dererwenda ZS, Dodson GG, Lawson DM, Turkenburg JP, Blorkling F, Huge-Jensen B, Patkar SA, Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351: 491-495, 1991.

Connemann J, Fischer J. Biodiesel quality Y2K and market experiences with FAME, CEN/TC 19 Automotive Fuels Millennium Symposion, Amsterdam, The Netherlands, 25-26 Nov., 1999.

Demirbas A. Importance of biodiesel as transportation fuel. Energy Policy 35:

4661-4670, 2007.

Dube MA, Tremblay AY, Liu J. Biodiesel production using a membrane

Eggert T, Pouderoyen GV, Pencreac’h G, Douchet I, Verger R, Dijkstra BW, Jaeger KE. Biochemical properties and three-dimensional structures of two extracellular lipolytic enzymes from Bacillus subtilis. Colloids and Surfaces B: Biointerfaces 26: 37-46, 2002.

Formhals A. Process and apparatus for preparing artificial threads. US Patent 1,975,504; 1934.

Formhals A. Method and apparatus for spinning. US Patent 2,160,962; 1939.

Formhals A. Artificial thread and method of producing same. US Patent 2,187,306; 1940.

Fukuda H, Kondo A, Noda H. Biodiesel Fuel Production by Transesterification of Oils. Journal of Bioscience and Bioengineering 92:

405-416, 2001.

Goldstein L. A new polymier carrier for immobilization of proteins of water insoluble derivaties of pepsin and trypsin. Biochimica Et Biophysica Acta.

Enzymology 327: 132-137, 1973.

Handa T, Hirose A, Yoshida S, Tsuchiya H. The Effect of Methylacrylate on the Activity of Glucoamylase Immobilized on Granular Polyacrylonitrile.

Biotechnology and Bioengineering 24: 1639-1652, 1982.

Holcapek M, Jandera P, Fisher J, Prokes B. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. Journal of Chromatography A 858: 13-31, 1999.

Li SF, Chen JP, Wu WT. Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. Journal of Molecular Catalysis B:

Enzymatic 47: 117-124, 2007.

Lichts FO. World Ethanol and Fuels Report, 2004. Cited in: IEA, Biofuels for Transport an International Perspective, Paris, 2003.

Ma F, Hanna MA. Biodiesel production: a review. Bioresource Technology 70:

1-15, 1999.

Martinek K, Klibanov AM, Goldmacher VS, Berezin IV. The principles of enzyme stabilization 1. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochimica Et Biophysica Acta Enzymology 485: 1-12, 1977.

Mateo C, Palomo JM, Gloria FL, Guisan JM, Roberto FL. Improvement of enzyme activity, stability and selectivity via immobilization techniques.

Enzyme and Microbial Technology 40: 1451-1463, 2007.

Morton WJ. Method of Dispersing Fluids. US Patent 705,691; 1902.

Nelson JM, Griffin EG. The influence of certain substances on the activity of invertase. Journal American Chemical Society 38: 722-730, 1916.

Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology 96:

769-777, 2005.

Paiva AL, Balcao VM, Malcata FX. Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme and Microbial Technology 27:

187-204, 2000.

Pencreac’h G, Baratti JC. Comparison of Hydrolytic Activity in Water and Heptane for Thirty-two Commercial Lipase Preparations. Enzyme and Microbial Technology 28: 473-479, 2001.

Electrospinning and Nanofibers. in Introduction & Electrospinning Process; 1st Edition, World Scientific, Singapore, 2005.

Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R.

Electrospun nanofibers: solving global issues. Materialstoday 9: 40-50, 2006.

Ranganathan SV, Narasimhan SL, Muthukumar K. An overview of enzymatic production of biodiesel. Bioresource Technology 99: 3975-3981, 2007.

Reneker DH, Chun I. Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology 7: 216-223, 1996.

Reneker DH, Fong H. Polymeric Nanofibers. in Applications of Electrospun Nanofibers in Current and Future Material; 1st Edition, American Chemical Society, Washington, 2006.

Salis A, Pinna M, Monduzzi M, Solinas V. Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology 119: 291-299, 2005.

Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnology Advances 19: 627-662, 2001.

Shri DJ. Nonwovens Report International 2006; Issue 3; Dutta on behalf of M/s. Eastlead Publications Private Ltd.

Sill TJ, Recum HAV. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 28: 1989-2006, 2008.

Tan T, Chen BQ, Ye H. Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor. Biochemical

Engineering Journal 29: 41-45, 2006.

Tickell J. From the fryer to the fuel tank. Tickell Energy Consulting:

Tallahassee, FL, 2000.

Valivety RH, Halling PJ, Peilow AD, Macrae AR. Relationship Between Water Activity and Catalytic Activity of Lipases in Organic Media.

European Journal of Biochemistry 222: 461-466, 1994.

Vulfson EN. Industrial applications of lipases. In: Woolley P, Peterson SB, editors. Lipases: their structure, biochemistry and applications. Cambridge:

Cambridge Univ. Press, pp. 271-88, 1994.

Wang Y, Ou S, Liu P, Xue F, Tang S. Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical 252: 107-112, 2006.

Watanabe Y, Pinsirodom P, Nagao T, Yamauchi A, Kobayashi T, Nishida Y, Takagi Y, Shimada Y. Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase.

Journal of Molecular Catalysis B: Enzymatic 44: 99-105, 2007

Wright HJ, Segur JB, Clark HV, Coburn SK, Langdon EE, Dupuis RN. A report on ester interchange. Oil and Soap 21: 145-148, 1944.

Ye P, Xu ZK, Che AF, Wu J, Seta P. Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials 26: 6394-6403, 2005.

Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical review 3: 69-91, 1914.

呂鋒洲、林仁混,基礎酵素學。聯經出版事業公司,1991。

邱少華,幾丁聚醣在固定化技術上之應用。博士論文,清華大學,2003。

陳國誠,生物固定化技術與產業應用。茂昌圖書有限公司,2000。

經濟部能源局,http://www.moeaboe.gov.tw,2008。

相關文件