• 沒有找到結果。

結論及未來研究

6.1 結論

本論文目的是研究大規模產出下,半導體廠應該採取何種設計方案。針對此 議題,本研究分成三個子題進行研究,各子題的研究貢獻分述如下:

子題一是發展單廠區最適運輸軌道層數設計的方法,此子題過去並無文獻探 討,本研究應可視為首創性研究。子題一分成兩階段求解,階段一提出了單廠區 最適機台數目的決定方法,階段二則提出了單廠區最適運輸軌道層數設計的方 法,可提供作為未來單廠區半導體廠房設計時的參考依據。實例驗證說明運輸軌 道在大規模晶圓廠時很容易成為生產瓶頸,因此可能需要設置多層軌道的運輸系 統,亦即廠房高度需要適度加高,此中資訊對於建築師非常重要,若未能在建築 廠房即考慮建築高度,到最後可能因為運輸軌道成為瓶頸,而使機台的產能無法 充分發揮。

子題二是發展一個可快速求解的雙廠區跨廠途程規劃方法,亦分成兩階段求 解。階段一說明各產品途程切割點的選擇方式,階段二則說明途程生產比例的微 調機制。此子題過去雖有文獻探討,但計算時間太長,本研究所提出的方法可大 幅縮短計算時間。在一典型的實驗案例,過去的研究約需計算 13 小時,本研究 提出的方法只需數十分鐘。但是求解品質約有 2%的誤差。

子題三是上述兩子題的應用,主要為提供半導體廠在不同產出規模時,廠房 該如何設計?實例驗證顯示,在小規模產出時應採用方案一(單廠區多層軌道的 方案),大規模產出時則應採用方案二(雙廠區跨廠生產的方案)。

6.2 未來研究方向

未來研究有兩個可能方向:(1)增加途程切割點;(2)多廠區的跨廠途程規劃。

在增加途程切割點方面,本研究目前只考慮一個切割點,亦即每種產品最多只能 跨廠一次,如果有多個切割點,在途程選擇上會比較有彈性,也可能會提高產出。

在多廠區的跨廠途程規劃方面,本研究目前只考慮兩個廠區的跨廠問題,當 可跨廠的廠區增多時,其複雜度會更高,管理上會更複雜,因此多廠區跨廠途程 規劃是另一個值得研究的議題。

參考文獻

Connors, D. P., Feigin, G. E., & Yao, D. D. (1996). A Queueing network model for semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 9(3), 412-427.

Defersha, F. M., & Chen, M., (2006). A comprehensive mathematical model for the design of cellular manufacturing systems. International Journal of Production Economics, 103, 767-783, 2006.

Egbelu, P. J., (1987). The use of non simulation approaches in estimating vehicle requirements in an automated guided vehicle based transport system. Material Flow, 4, 17–32.

Gaurav, K. A., & Sunderesh, S. H., (2006). A Survey of Automated Material Handling Systems in 300-mm Semiconductor Fabs. IEEE Transactions on Semiconductor Manufacturing,19(1), 112-120.

Geiger, C. D., Hase, R., Takoudis, C. G., & Uzsoy, R., (1997). Alternative facility layouts for semiconductor wafer fabrication facilities. IEEE Transactions on Components, Packaging, and Manufacturing Technology—Part C, 20(2), 152-163.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, Univ.

of Michigan Press.

Hood, S. J., Bermon, S., & Barahona, F., (2003). Capacity planning under demand uncertainty for semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 16(2), 273- 280.

Hsieh, S., & Hung, C. R., (2004). Feasibility study of modular plant for 300mm-IC

fabrications. Journal of Intelligent Manufacturing, 15, 233-244.

Jang, J., Suh, J., & Ferreira, P. M., (2001). An AGV routing policy reflecting the current and future state of semiconductor and LCD production lines. International Journal of Production Research, 39(17), 3901-3921.

Kim, C.O., Beak, J.G., & Jun, J., (2005). A machine cell formation algorithm for simultaneously minimising machine workload imbalances and inter-cell part movements. International Journal of Advanced Manufacturing Technology, 26, 268-275.

Kuo, C. H., & Huang, C. S., (2006). Dispatching of overhead hoist vehicles in a fab intrabay using a multimission-oriented controller. International Journal of Advanced Manufacturing Technology, 27, 824-832.

Lee, M. K., Luong, H. S., & Abhary, K., (1997). A genetic algorithm based cell design considering alternative routing. Computer Integrated Manufacturing Systems, 10, No. 2, 93-107.

Lin, J. T., Wang, F. K., & Wu, C. K., (2003). Simulation Analysis of the Connecting transport AMHS in a wafer fab. IEEE Transactions on semiconductor Manufacturing, 16(3), 555-564.

Mackulak, G. T., & Savory, P., (2001). A simulation-based experiment for comparing AMHS performance in a semiconductor fabrication facility. IEEE Transactions on Semiconductor Manufacturing, 14(3), 273-280.

Montoya-Torres, J. R., (2006). A literature survey on the design approaches and operational issues of automated wafer-transport systems for wafer fabs. Production Planning & Control, 17(7), 648-663.

performance in 300mm fabs. International Journal of Production Research, 45(3), 571-590.

Nsakanda, A. L., Diaby, M., & Price, W. L., (2006). Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings.

European Journal of Operational Research, 171, 1051-1070.

Peters, B. A., & Yang T., (1997). Integrated facility layout and material handling system design in semiconductor fabrication facilities. IEEE Transactions on Semiconductor Manufacturing, 10(3), 360-369.

Pillai, D., Quinn, T., Kryder, K., & Charlson, D., (1999). Integration of 300mm fab layouts and material handling automation. In Proceedings of the 1999 Winter Simulation Conference, 23–26.

Shanthikumar, J. G., Ding, S., & Zhang, M. T., (2007). Queueing Theory for Semiconductor Manufacturing Systems: A Survey and Open Problems. IEEE Transactions on Semiconductor Manufacturing, 4(4), 513-522.

Swaminathan, J., (2000). Tool capacity planning for semiconductor fabrication facilities under demand uncertainty. European Journal of Operational Research, 120, 545-558.

Ting, J. H., & Tanchoco, J. M. A., (2001). Optimal bidirectional spine layout for overhead material handling systems, IEEE Transactions on Semiconductor Manufacturing, 14(1), 57-64.

Toba, H., Izumi, H., Hatada, H., & Chikushima, T., (2005). Dynamic Load Balancing Among Multiple Fabrication Lines Through Estimation of Minimum Inter-Operation Time. IEEE Transactions on Semiconductor Manufacturing, 18(1), 202-213.

Vin, E., Lit, P. D., & Delchambre, A., (2005). A multiple-objective grouping genetic algorithm for the cell formation problem with alternative routings. Journal of Intelligent Manufacturing, 16, 189-209.

Wang, F. K., & Lin, J. T., (2004). Performance evaluation of an automated material handling system for a wafer fab. Robotics and Computer-Integrated Manufacturing, 20, 91-100.

Wu, M. C., & Chang, W. J., (2007). A short-term capacity trading method for semiconductor fabs with partnership. Expert systems with application, 33(2), 476-483, 2007.

Wu, M. C., Chen, C. F., & Shih, C. F., (2009). Route Planning for Two Wafer Fabs with Capacity-Sharing Mechanisms. International Journal of Production Research, 47(20), 5843-5856.

Wu, S. D., Erkoc, M., & Karabuk, S., (2005). Managing capacity in the high-tech industry: a review of literature. The Engineering Economist, 50, 125-158.