• 沒有找到結果。

本論文完成對奈米結構製程與應用的研究,進行結合大面積表面奈米結構與不同類 型太陽能電池之工作,探討奈米結構特性與其對於元件表現之影響與貢獻。以下就各實 驗主題進行總結以及未來展望的部分。

7-1 仿生抗反射奈米結構應用於單晶矽太陽能電池

這一部分完成了次波長蛾眼奈米結構於高分子薄膜(PMMA)表面,並直接壓印於單 晶矽太陽能電池試片做為抗反射層,有效降低反射率而提升太陽能轉換效率從 12.85%

至 14.2%。製程上利用奈米球微影技術降低模具製作所需的時間與成本、以 PDMS 翻模、

反式壓印的方法改善舊有的簡易奈米壓印機缺陷,證實了利用這樣低成本、快速的製程 方式,可直接將大面積奈米結構壓印至表面具有微米結構粗糙化的太陽能電池薄片,且 製程過程中不會對試片造成損害。

實驗結果雖然證實表面利用奈米壓印次波長結構能提升太陽能電池轉換效率,但仍 未能超越傳統商業化矽基太陽能電池所使用的單層氮化矽抗反射薄膜,其原因為:(1) 使用壓印阻劑為 PMMA,折射係數為 1.5,雖然形成次波長奈米結構能達到漸變性折射 係數的效果,但仍與基板折射係數有差距,造成降低反射率的效果有限,(2)使用 PDMS 軟模做為壓印模具,雖有助於壓印時的壓力平均以及可壓印於非平面表面,但由於這裡 使用的 PDMS(Sylgard 184)過軟,難以形成高深寬比結構,實驗嘗試過更深的結構 (>500nm),結果發現轉印結構不均勻且有傾斜倒塌的情況發生。未來可改善的方向:(1) 選用折射係數較高的材料,並且可搭配採用紫外光固化壓印技術,(2)選用其他材料做為 軟性模具翻模,例如其他類型的 PDMS 或者含氟聚合物,使壓印之結構具有更高隻深寬 比。

- 85 -

7-2 氯化銫自組裝奈米結構與其應用於有機/無機異質接面太陽能電池

本實驗首先完成氯化銫自組裝奈米結構,並以乾蝕刻將奈米結構形成於單晶矽基板 表面。藉由控制沉積厚度、濕度以及暴露在空氣中的時間,能夠有效控制結構大小、密 度,因而達到由奈米結構化降低矽基板表面光反射率。第二部分以導電高分子材料 PEDOT:PSS 取代 p-type 矽,與 n-type 單晶矽基板結合形成複合材料的異質接面太陽能 電池,有別於傳統商業化矽基太陽能電池採用離子植佈或高溫爐管參雜的方式形成 p-n

- 86 -

接著將奈米壓印製程技術應用於高分子太陽能電池,實驗中選用高透光度、高耐溫 阻劑,能夠直接將週期性結構形成於玻璃基板表面,沉積一層 ITO 後,完成一具有表面 週期性結構之透明導電玻璃基板,用於進行高分子太陽能電池元件製程。另一方面,為 了降低表面結構對於後續高分子塗佈的影響,這裡採用二次塗佈的方式使結構圓滑化,

有助於高分子材料旋塗的均勻性。太陽能電池的表現比較中,週期 1200、800 以及 600nm 的表面結構相對於平面均能有助於光電流以及效率的提升。從光學特性的量測結果中,

- 87 -

參考文獻

[1] Lori E. Greene, Matt Law, Dawud H. Tan, Max Montano, Josh Goldberger, Gabor Somorjai, and Peidong Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett. 5, 527-530 (2005).

[2] Linwei Yu, Franck Fortuna, Benedict O’Donnell, Taewoo Jeon, Martin Foldyna, Gennaro Picardi, and Pere Roca i Cabarrocas, “Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells,” Nano Lett. 12, 4153-4158 (2012).

[3] S. Wang, X.Z. Yu, and H.T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91, 061105 (2007).

[4] G.-R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett. 90, 181923 (2007).

[5] J.W. Leem, K.S. Chung, and J.S. Yu, “Antireflective properties of disordered Si SWSs with hydrophobic surface by thermally dewetted Pt nanomask patterns for Si-based solar cells,” Curr. Appl. Phys. 12, 291-298 (2012).

[6] Y-X Liao and F-T Yi, “Nanopillars by cesium chloride self-assembly and dry etching,”

Nanotechnology 21, 465302 (2010).

[7] Jing Liu, Marina Ashmkhan, Bo Wang, and Futing Yi, “Fabrication and reflection

properties of silicon nanopillars by cesium chloride self-assembly and dry etching,” Appl Surf Sci. 258, 8825-8830 (2012).

[8] Yuan-xun Liao, Jing Liu, Bo Wang, and Fu-ting Yi, “Multiform structures with silicon nanopillars by cesium chloride self-assembly and dry etching,” Appl Surf Sci. 257, 10489-10493 (2011).

[9] Jing Liu, Marina Ashmkhan, Gangqiang Dong, Bo Wang, and Futing Yi, “Fabrication of micro-nano surface texture by CsCl lithography with antireflection and photoelectronic properties for solar cells,” Sol Energ Mat Sol C 108, 93-97 (2013).

[10] Seung-Man Yang, Se Gyu Jang, Dae-Geun Choi, Sarah Kim, and Hyung Kyun Yu,

“Nanomachining by colloidal lithography,” small, 2, 458-475 (2006).

[11] Brian G. Prevo, Daniel M. Kuncicky, Orlin D. Velev, “Engineered deposition of coatings from nano- and micro-particles: A brief review of convective assembly at high volume fraction,” Colloids and Surfaces A: Physicochem. Eng. Aspects 311, 2-10 (2007).

[12] Liang Li, Tianyou Zhai, Haibo Zeng, Xiaosheng Fang, Yoshio Bando and Dmitri Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21, 40-56 (2011).

[13] Xiaozhou Ye and Limin Qi, “Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications,” Nano Today 6, 608-631 (2011).

[14] Hongta Yang and Peng Jiang, “Large-scale colloidal self-assembly by doctor blade coating,” Langmuir 26, 13173-13182 (2010).

[15] Sangmoo Jeong, Liangbing Hu, Hye Ryoung Lee, Erik Garnett, Jang Wook Choi, and Yi Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989-2994 (2010).

[16] Xudong Wang, Christopher J. Summers, and Zhong Lin Wang, “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Lett. 4, 423-426 (2004).

[17] Cheng Li, Guosong Hong, Pengwei Wang, Dapeng Yu, and Limin Qi, “Wet chemical

- 88 -

approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals,” Chem. Mater. 21, 891-897 (2009).

[18] Xu Dong Wang, Elton Graugnard, Jeffrey S. King, Zhong Lin Wang, and Christopher J.

Summers, “Large-scale fabrication of ordered nanobowl arrays,” Nano Lett. 4, 2223-2226 (2004).

[19] Maryam Bayati, Piotr Patoka, Michael Giersig, and Elena R. Savinova, “An approach to fabrication of metal nanoring arrays,” Langmuir 26, 3549-3554 (2010).

[20] J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic

nanoparticles,” Colloids and Surfaces A: Physicochem. Eng. Aspects 219, 1-6 (2003).

[21] Shemaiah M. Weekes, Feodor Y. Ogrin, and William A. Murray, “Fabrication of large-area ferromagnetic arrays using etched nanosphere lithography,” Langmuir 20, 11208-11212 (2004).

[22] Ching-Mei Hsu, Stephen T. Connor, Mary X. Tang, and Yi Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys.

Lett. 93, 133109 (2008).

[23] Ho-Yen Hsieh, Sheng-Huang Huang, Kao-Fen Liao, Sheng-Kai Su, Chih-Huang Lai and Lih-Juann Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,”

Nanotechnology 18, 505305 (2007).

[24] Xin Yan, Jimin Yao, Guang Lu, Xiao Li, Junhu Zhang, Kun Han, and Bai Yang,

“Fabrication of non-close-packed arrays of colloidal spheres by soft lithography,” J. Am.

Chem. Soc. 127, 7688-7689(2005).

[25] Xin Yan, Jimin Yao, Guang Lu, Xin Chen, Kai Zhang,† and Bai Yang, “Microcontact printing of colloidal crystals,” J. Am. Chem. Soc. 126, 10510-10511 (2004).

[26] 陳守仁,巫震華,何侑倫,王維漢,陳來勝,“奈米轉印技術發展現況”, 機械工業雜 誌 267, 36-46 (2005).

[27] L. Jay Guo, “Nanoimprint lithography: methods and material requirements,” Adv. Mater.

19, 495-513 (2007).

[28] Helmut Schift, “Nanoimprint lithography: An old story in modern times? A review,” J.

Vac. Sci. Technol. B 26, 458-480 (2008).

[29] http://www.itrs.net/, International Technology Roadmap for Semiconductors website.

[30] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114-3116 (1995).

[31] Stephen Y. Chou, Peter R. Krauss, Wei Zhang, Lingjie Guo, and Lei Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Technol. B 15, 2897 (1997).

[32] Matthew Colburn, Stephen C. Johnson, Michael D. Stewart, S. Damle, Todd C. Bailey, Bernard Choi, M. Wedlake, Timothy B. Michaelson ; S. V. Sreenivasan, John G. Ekerdt, and C. Grant Willson, “Step and flash imprint lithography: A new approach to

high-resolution patterning,” Proc. of SPIE 3676, 379 (1999).

[33] Y. Xia and G. M. Whitesides, “Soft lithography,” Angew. Chem. Int. 37, 550-575 (1998).

[34] Stephen Y. Chou Chris Keimel, and Jian Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature 417, 835 - 837 (2002).

[35] Xiaogan Liang , Wei Zhang, Mingtao Li, Qiangfei Xia, Wei Wu, Haixiong Ge, Xinyu Huang, Stephen Y. Chou, “Electrostatic force-assisted nanoimprint lithography (EFAN),”

Nano Lett. 5, 527-530 (2005).

[36] Xing Cheng and L. Jay Guo, “A combined-nanoimprint-and-photolithography patterning

- 89 -

technique,” Microelectron. Eng. 71, 277-282 (2004).

[37] Xing Cheng and L. Jay Guo, “One-step lithography for various size patterns with a hybrid mask-mold,” Microelectron. Eng. 71, 288 (2004).

[38] Zhiwei Li, Yanni Gu, Lei Wang, Haixiong Ge, Wei Wu, Qiangfei Xia, Changsheng Yuan, Yanfeng Chen, Bo Cui and R. Stanley Williams, “ Hybrid nanoimprint−soft lithography with sub-15 nm resolution,” Nano Lett. 9, 2306-2310 (2009).

[39] He Gao, Hua Tan, Wei Zhang, Keith Morton, and Stephen Y. Chou, “Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field,” Nano Lett 6, 2438-2441 (2006).

[40] Jer-Haur Chang, Fang-Sung Cheng, Chi-Chung Chao, Yung-Chun Weng, and Sen-Yeu Yang, “Direct imprinting using soft mold and gas pressure for large area and curved surfaces,” J. Vac. Sci. Technol. A 23, 1687-1690 (2005).

[41] Vivian E. Ferry, Marc A. Verschuuren, Hongbo B. T. Li, Ewold Verhagen, Robert J.

Walters, Ruud E. I. Schropp, Harry A. Atwater, and Albert Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt Express 21, A237-A245 (2010).

[42] Joydeep Bhattacharya, Nayan Chakravarty, Sambit Pattnaik, W. Dennis Slafer, Rana Biswas, and Vikram L. Dalal, “A photonic-plasmonic structure for enhancing light absorption in thin film solar cells,” Appl. Phys. Lett. 99, 131114 (2011).

[43] U. W. Paetzold, E. Moulin,1 D. Michaelis, W. Bo¨ ttler, C. Wa¨chter, V. Hagemann, M.

Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett. 99, 181105 (2011).

[44] Alfred J. Baca, Tu T. Truong, Lee R. Cambrea, Jason M. Montgomery, Stephen K. Gray, Daner Abdula, Tony R. Banks, Jimin Yao, Ralph G. Nuzzo, and John A. Rogers,

“Molded plasmonic crystals for detecting and spatially imaging surface bound species by surface-enhanced Raman scattering,” Appl. Phys. Lett. 94, 243109 (2009).

[45] Matthias Geissler, Kebin Li, Bo Cui, Liviu Clime, and Teodor Veres, “Plastic substrates for surface-enhanced Raman scattering,” J. Phys. Chem. C 113, 17296-17300 (2009).

[46] Charles J Choi1, Zhida Xu, Hsin-YuWu, Gang Logan Liu an Brian T Cunningham,

“Surface-enhanced Raman nanodomes,” Nanotechnology 21, 415301 (2010).

[47] John McPhillips, Christina McClatchey, Tony Kelly, Antony Murphy, Magnus P. Jonsson, Gregory A. Wurtz,§ Richard J. Winfield, and Robert J. Pollard, “Plasmonic sensing using nanodome arrays fabricated by soft nanoimprint lithography,” J. Phys. Chem. C 115, 15234-15239 (2011).

[48] Jimin Yao, An-Phong Le, Matthew V. Schulmerich, Joana Maria, Tae-Woo Lee, Stephen K. Gray, Rohit Bhargava, John A. Rogers, and Ralph G. Nuzzo, “Soft embossing of nanoscale optical and plasmonic structures in glass,” ACS Nano 5, 5763-5774 (2011).

[49] Wen-Di Li, Fei Ding, Jonathan Hu, and Stephen Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt Express 19, 3925-3936 (2011).

[50] http://www.nrel.gov/, National Renewable Energy Laboratory website.

[51] Martin A. Green, “Crystalline and thin-film silicon solar cells: state of the art and future potential,” Solar Energy 74, 181-192 (2003).

[52] C. W. Tang and A. C. Albrecht, “Chlorophyll-a photovoltaic cells,” Nature 254, 507-509 (1975).

[53] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells:

enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science

- 90 -

270, 1789-1791 (1995).

[54] Hsiang-Yu Chen, Jianhui Hou, Shaoqing Zhang, Yongye Liang, Guanwen Yang, Yang Yang, Luping Yu, Yue Wu, and Gang Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics. 3, 649-653 (2009).

[55] Yongye Liang, Zheng Xu, Jiangbin Xia, Szu-Ting Tsai, Yue Wu, Gang Li, Claire Ray, and Luping Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135-E138 (2010).

[56] Zhicai He, Chengmei Zhong, Xun Huang, Wai-Yeung Wong, Hongbin Wu, Liwei Chen, Shijian Su, and Yong Cao, “Simultaneous enhancement of open-circuit voltage,

short-circuit current density, and fill factor in polymer solar cells,” Adv. Mater. 23, 4636-4643 (2011).

[57] Yen-Ju Cheng, Sheng-Hsiung Yang, and Chain-Shu Hsu, “Synthesis of conjugated polymers for organic solar cell applications,” Chem. Rev. 109, 5868-5923 (2009).

[58] http://panasonic.co.jp/, Panasonic corporation website.

[59] Enzheng Shi, Luhui Zhang, Zhen Li, Peixu Li, Yuanyuan Shang, Yi Jia, Jinquan Wei, Kunlin Wang, Hongwei Zhu, Dehai Wu, Sen Zhang and Anyuan Cao, “TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%,” Sci. Rep. 2, 884 (2012).

[60] Yeonwoong Jung, Xiaokai Li, Nitin K. Rajan, André D. Taylor, and Mark A. Reed,

“Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells,”

Nano Lett.13, 95-99 (2013).

[61] Jiangtao Di , Zhenzhong Yong , Xinhe Zheng , Baoquan Sun , and Qingwen Li, “Aligned carbon nanotubes for high-efficiency schottky solar cells,” small, 9, 1367-1372 (2013).

[62] Michael J. Sailor, Eric J. Ginsburg, Christopher B. Gorman, Amit Kumar, Robert H.

Grubbs, and Nathan S. Lewis, “Thin films of n-Si/poly-(CH3)3Si-cyclooctatetraene:

conducting-polymer solar cells and layered structures,” Science 249, 1146-1149 (1990).

[63] M.M. El-Nahass, H.M. Zeyada, K.F. Abd-El-Rahman, and A.A.A. Darwish, “Fabrication and characterization of 4-tricyanovinyl-N,N-diethylaniline/p-silicon hybrid

organic-inorganic solar cells,” Sol. Energy Mater. Sol. Cells 91, 1120-1126 (2007).

[64] Weining Wang and E. A. Schiff, “Polyaniline on crystalline silicon heterojunction solar cells,” Appl. Phys. Lett. 91, 133504 (2007).

[65] Chien-Hung Lin, Shao-Chin Tseng, Yuan-Kui Liu, Yian Tai, Surojit Chattopadhyay, Chi-Feng Lin, Jiun-Haw Lee, Jih-Shang Hwang, Yung-Yu Hsu, Li-Chyong Chen, Wei-Chao Chen, and Kuei-Hsien Chen, “Suppressing series resistance in organic solar cells by oxygen plasma treatment,” Appl. Phys. Lett. 92, 233302 (2008).

[66] Sushobhan Avasthi , Stephanie Lee , Yueh-Lin Loo , and James C. Sturm, “Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells”, Adv. Mater. 23, 5762-5766 (2011).

[67] Fute Zhang, Baoquan Sun, Tao Song, Xiulin Zhu, and Shuittong Lee, “Air stable, efficient hybrid photovoltaic devices based on poly(3-hexylthiophene) and silicon nanostructures”, Chem. Mater. 23, 2084-2090 (2011).

[68] Qiming Liu, Masahiro Ono, Zeguo Tang, Ryo Ishikawa, Keiji Ueno, and Hajime Shirai,

“Highly efficient crystalline silicon/Zonyl fluorosurfactant-treated organic heterojunction solar cells,” Appl. Phys. Lett. 100, 183901 (2012).

[69] Masahiro Ono, Zeguo Tang, Ryo Ishikawa, Takuya Gotou1, Keiji Ueno, and Hajime Shirai, “Efficient crystalline Si/poly(ethylene dioxythiophene):poly(styrene sulfonate):

graphene oxide composite heterojunction solar cells,” Appl. Phys. Express 5, 032301

- 91 -

(2012).

[70] Sangmoo Jeong, Erik C. Garnett, Shuang Wang, Zongfu Yu, Shanhui Fan, Mark L.

Brongersma, Michael D. McGehee, and Yi Cui, “Hybrid silicon nanocone-polymer solar cells”, Nano Lett 12, 971-2976 (2012).

[71] Hong-Jhang Syu, Shu-Chia Shiu, and Ching-Fuh Lin, “Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%”, Sol Energ Mat Sol C 98, 267-272 (2012).

[72] Fute Zhang, Tao Song and Baoquan Sun, “Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application”, Nanotechnology 23, 194006 (2012).

[73] Syed Abdul Moiz, Ahmed Muhammad Nahhas, Han-Don Um, Sang-Won Jee, Hyung Koun Cho, Sang-Woo Kim and Jung-Ho Lee, “A stamped PEDOT:PSS-silicon nanowire hybrid solar cell”, Nanotechnology 23, 145401 (2012).

[74] Ting-Gang Chen, Bo-Yu Huang, En-Chen Chen, Peichen Yu, and Hsin-Fei Meng,

“Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency,” Appl. Phys. Lett. 101, 033301 (2012).

[75] Fute Zhang, Dong Liu, Yunfang Zhang, Huaixin Wei, Tao Song, and Baoquan Sun,

“Methyl/allyl monolayer on silicon: efficient surface passivation for silicon-conjugated polymer hybrid solar cell,” ACS Appl. Mater. Interfaces 5, 4678 (2013).

[76] S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, and L. C. Chen,

“Anti-reflecting and photonic nanostructures,” Mat Sci Eng R 69, 1-35 (2010).

[77] W. H. Southwell, “Gradient-index antireflection coatings,” Optics Lett. 8, 584-586 (1983).

[78] Y. F. Li, J. H. Zhang, and B. Yang, “Antireflective surfaces based on biomimetic nanopillared arrays,” Nano Today 5, 117-127 (2010).

[79] C. G. Bernhard and W. H. Miller, “A corneal nipple pattern in insect compound eyes,”

Acta Physiol. Scand. 56, 385 (1962).

[80] D. G. Stavenga1, S. Foletti1, G. Palasantzas and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. R. Soc. B 273, 661-667 (2006).

[81] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H.

C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures, ” Nat Nanotechnol 2, 770-774 (2007).

[82] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J.

A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat Photonics 1, 176-179 (2007).

[83] Jianhua Zhao, Aihua Wang, Martin A. Green, and Francesca Ferrazza, “19.8% efficient

‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,”

Appl. Phys. Lett. 73, 1991 (1998).

[84] P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C.

Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv Mater 21, 1618-1621 (2009).

[85] M. Y. Chiu, C. H. Chang, M. A. Tsai, F. Y. Chang, and P. C. Yu, “Improved optical transmission and current matching of a triple-junction solar cell utilizing sub-wavelength structures,” Opt Express 18, A308-A313 (2010).

[86] Li-Ko Yeh, Kun-Yu Lai, Guan-Jhong Lin, Po-Han Fu, Hung-Chih Chang, Chin-An Lin, and Jr-Hau He, “Giant efficiency enhancement of GaAs solar cells with graded

antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater. 1,

- 92 -

506-510 (2011).

[87] Kyoung Seok Cho, P. Mandal, Kyounghyun Kim, In Hyung Baek, Sangjun Lee, Hanjo Lim, Doo Jin Cho, Sangin Kim, Jaejin Lee, Fabian Rotermund, “Improved efficiency in GaAs solar cells by 1D and 2D nanopatterns fabricated by laser interference lithography,”

Optics Communications 284, 2608-2612 (2011).

[88] L. Ae´ , D. Kieven, J. Chen, R. Klenk, Th. Rissom, Y. Tang and M. Ch. Lux-Steiner,

“ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells,”

Prog. Photovolt: Res. Appl. 18, 209-213 (2010).

[89] Jie Chen, Hong Ye, Lorenz Ae´, Yang Tang, David Kieven, Thorsten Rissom, Julia

[89] Jie Chen, Hong Ye, Lorenz Ae´, Yang Tang, David Kieven, Thorsten Rissom, Julia

相關文件