• 沒有找到結果。

本研究之目的為使用 Mori-Tanaka 模式模擬壓電壓磁橢球顆粒複合材料於不同母 材極化方向,與不同橢球顆粒內含物之旋轉或極化方向之等效材料性質,以找出最佳 磁電電壓係數之配置方式,並藉由 COMSOL Multiphysics 有限元素分析軟體之數據加 以驗證,證實微觀力學理論之準確性。本章將研究結果整理後提出結論,並闡述未來 之展望。

5-1 研究結論

1. 內含物形狀對於磁電耦合效應之影響

特殊極化方向下之 BTO/CFO 配置,球狀顆粒複合材料之最佳磁電電壓係數 𝛼E,33= -1.265 V/cmOe,纖維複合材料之最佳磁電電壓係數𝛼E,33= -5.821 V/cmOe,

後者提升了 4.6 倍。特殊極化方向下之 CFO/BTO 配置,球狀顆粒複合材料之最佳 磁電電壓係數𝛼E,33= -1.965 V/cmOe,纖維複合材料之最佳磁電電壓係數𝛼E,33= -6.232 V/cmOe,後者提升了 3.17 倍。考量內含物形狀對於磁電耦合效應之影響,

纖維複合材料之表現優於顆粒複合材料。

2. 母材與內含物配置對於磁電耦合效應之影響(BTO/CFO 與 CFO/BTO)

本文主要使用具 6mm 對稱性之壓電材料 BTO 與壓磁材料 CFO 進行研究。將 配置由 BTO[001]/CFO[001]改為 CFO[001]/BTO[001],最佳磁電電壓係數𝛼E,11 = -1.265 V/cmOe 提升至-1.965 V/cmOe;最佳磁電電壓係數由𝛼E,33 = 1.149 V/cmOe 提升至𝛼E,33= 1.228 V/cmOe。由 BTO[100]/CFO[100]改為 CFO[100]/BTO[100],最 佳磁電電壓係數𝛼E,11 = -0.5788 V/cmOe 提升至 0.8071 V/cmOe;最佳磁電電壓係數 由𝛼E,33= -5.821 V/cmOe 提升至𝛼E,33= -6.232 V/cmOe。結果顯示:在其餘條件相同 下,選擇 CFO/BTO 配置,磁電耦合效應將優於 BTO/CFO 配置。

3. 磁電耦合效應最佳化之成效

本文選擇橢球顆粒(a3=2)複合材料進行磁電耦合效應最佳化,並使用具 6mm 對稱性之壓電材料 BTO 與壓磁材料 CFO。固定橢球內含物之長軸方向,改變內 含物與母材之極化方向,可使得最佳磁電電壓係數獲得有效提升:BTO/CFO 的配 置下,𝛼E11 由-0.5294 V/cmOe 增加至-1.3651 V/cmOe,𝛼E33 由-0.0303V/cmOe 增加 至-2.262 V/cmOe,最佳磁電電壓係數提升了 4.27 倍;CFO/BTO 的配置下,𝛼E11 由 -0.7057 V/cmOe 增加至-1.836 V/cmOe,𝛼E33 由 0.971 V/cmOe 增加至-2.876 V/cmOe,

最佳磁電電壓係數提升了 2.96 倍。

4. 有限元素法分析數據誤差之比較

觀察 COMSOL Multiphysics 有限元素分析對照 Mori-Tanaka 模式所得數據,

橢球顆粒複合材料相較球狀顆粒及纖維複合材料,對於等效材料性質預測之誤差 較大,且橢球顆粒複合材料能夠模擬之體積百分比受限較多:球狀顆粒與纖維狀 模型之最大體積比為 0.7;橢球顆粒(長軸半徑為 2)之最大體積比為 0.5。相較橢球 顆粒複合材料,COMSOL Multiphysics 會更適用於球狀顆粒與纖維複合材料之分 析。

5-2 未來展望

1. 選用其他壓電及壓磁材料

目前較為人們熟知的壓電材料除 BaTiO3外,尚有 PZT、PbZrO3、LiNbO3、 NH4H2PO3及 SiO2等,而壓磁材料尚有 Terfenol-D 等可以用於研究,材料性質對 於磁電耦合效應之優劣有著決定性的影響,相信嘗試不同壓電與壓磁材料之配置,

能對磁電耦合效應之最佳化有所助益。

2. 非完美交界面對於磁電耦合效應之影響

過往討論複合材料的理論中,大多假設材料間的交界面為完美狀態,就彈性 力學的觀點而言,完美交界面即徹體力(Traction)與位移(Displacement)可以在相與 相之間完全被傳遞。若考量到應用層面,實際複合材料內部之交界面大多存在著 缺陷,使得交界面呈現非完美狀態,因此非完美交界面對於複合材料的影響值得 再深究。使用有限元素分析軟體建立完美交界面模型比非完美交界模型要來得直 覺與簡單許多,如何成功建立吻合實際情形之非完美交界模型仍需要嘗試。

3. 三相橢球顆粒複合材料

以往科學家曾經探討過雙層橢球顆粒內含物之反平面剪力問題(Ru et al., 1999),

三相橢球顆粒複合材料之配置,除了使用雙層橢球顆粒之外,也可使用母材內同時含 有兩種不同材料之橢球顆粒。

參考文獻

Ascher, E., Rieder, H., Schmid, H., Stossel, H., 1966. "Some properties of

ferromagnetoelectric nickel-iodine boracite, Ni3B7O13I," Journal of Applied Physics,vol.

37, pp. 1404-1405.

Ashby, M.F., Shercliff, H., Cebon, D., 2007. Marerials Engineering, Science, Processing and Design: Butterwirth-Heinemann.

Astrov, D.N., 1960. "The magnetoelectric effect in antiferromagnetics," Soviet Physics - JETP, vol. 11, pp. 708-709.

Avellaneda, M., Harshe, G., 1994. "Magnetoelectric effect

in piezoelectric/magnetostrictive multilayer (2-2) composite," Journal Intelligent Material System and Structures, vol. 5, pp. 501-513.

Bayrashev, A., Robbins, W.P., Ziaie, B., 2004. "Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites," Sensors and Actuators a-Physical, vol. 114, pp. 244-249.

Benveniste, Y., Miloh, T., 2001. ” Imperfect soft and stiff interfaces in

two-dimensional elasticity,” Mechanics of Materials, vol. 33, pp. 309-323.

Boomgaard, J.V.D., Terrell, D.R., Born, R.A.J., Giller, H.F.J.I., 1974. "An in situ grown eutectic magnetoelectric composite material part I composition and unidirectional solidification," Journal of Materials Science, vol. 9, pp.1705-1709.

Boomgaard, J.V.D., Born, R.A.J., 1978. "A sintered magnetoelectric composite material BaTiO3-Ni(Co,Mn)Fe2O4," Journal of Materials Science, vol. 13, pp.

1538-1548.

Chen, W.Q., Zhou, Y.Y., Lu, C.F., Ding, H.J., 2009. ” Bending of multiferroic

laminated rectangular plates with imperfect interlaminar bonding,” European Journal of Mechanics-A/Solids, vol. 28, pp. 720-727.

Dong, S.X., Zhai, J.Y., Li, J.F., Viehland, D., 2006. "Enhanced magnetoelectric effect in three-phase MnZnFe2O4/Tb1-xDyXFe2-y/ Pb(Zr,Ti)O3 composites," Journal of Applied Physics, vol. 100, pp. 124108.

Dunn, M.L., Taya, M., 1993. “An analysis of piezoelectric composite materials

containing ellipsoidal inhomogeneities,” Proceedings of the Royal Society of London A, vol. 443, pp. 265-287.

Eerenstein, W., Mathur, N.D., Scott, J.F., 2006. "Multiferroic and magnetoelectric materials," Nature, vol. 442, pp. 759-765.

Eshelby, J.D., 1957. "The determination of the elastic field of an ellipsoidal

inclusion, and related problems," Proceedings of the Royal Society of London.

Series A. Mathematical and Physical Sciences, vol. 241, pp. 376-396.

Fuentes, L., Garcia, M., Bueno, D., Fuentes, M.E., Munoz, A., 2006. "Magnetoelectric effect in Bi5Ti3FeO15 ceramics obtained by molten salts synthesis," Ferroelectrics, vol. 336, pp.

81-89.

Gao, Z.J., 1995. "A circular inclusion with imperfect interface: Eshelby's tensor and related problems," Journal of Applied Mechanics-Transactions of the Asme, vol. 62, pp. 860-866.

Giraud, A., Gruescu, C., Do, D.P., Homand, F., Kondo, D., 2007. ” Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipsoidal inhomogeneities,” International Journal of Solids and Structures, vol. 44, pp.

2627-2647.

Giraud, A., Huynh, Q.V., Hoxha, D., Kondo, D., 2007. “Effective poroelastic properties of transversely isotropic rock-like composites with arbitrarily oriented ellipsoidal inclusions,” Mechanics of Materials, vol. 39, pp. 1006-1024.

Gond, S.X., Meguid, S.A., 1993. “On the elastic fields of an elliptical inhomogeneity under plane deformation,” Proceedings of the Royal Society of London A, vol. 443, pp.

457-471.

Haftbaradaran, H., Shodja, H.M., 2009. “Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites,” International Journal of Solids and Structures, vol. 46, pp. 2978-2987.

Harshe, G., Dougherty, J.P., Newnham, R.E., 1993. "Theoretical modeling of

3-0/0-3 magnetoelectric composites," International Journal of Applied Electromagnetics in Materials, vol. 4, pp. 161-171.

Hill, R., 1965. "Theory of mechanical properties of fibre-strengthened materials--III.

self-consistent model," Journal of the Mechanics and Physics of Solids, vol.

13, pp. 189-198.

Huang, G.Y., Wang, B.L., Mai, Y.W., 2009. "Effective properties of

magnetoelectroelastic materials with aligned ellipsoidal voids," Mechanics Research Communications, vol. 36, pp.563-572.

Huang, J.H., 1998. “Analytical predictions for the magnetoelectric coupling in

piezomagnetic materials reinforced by piezoelectric ellipsoidal inclusions,” Physical Review B, vol. 58, pp. 12-15.

Huang, J.H., Chiu, Y.H., Liu, H.K., 1998. “Magneto-electro-elastic Eshelby tensors for a piezoelectric-piezomagnetic composite reinforced by ellipsoidal inclusions,”

Journal of Applied Physics, vol. 83, pp. 5364-5370.

Huang, J.H., Kuo, W.S., 1997. ” The analysis of piezoelectric/piezomagnetic

composite materials containing ellipsoidal inclusions,” Journal of Applied Physics, vol.

81, pp. 1378-1386.

Huang, J.H., Yu, J.S., 1994. “Electroelastic Eshelby tensors for an ellipsoidal

piezoelectric inclusion,” Composites Engineering, vol. 4, pp. 1169-1182.

Kim, J.Y., 2011. "Micromechanical analysis of effective properties of

magneto-electro-thermo-elastic multilayer composites," International Journal of Engineering Science, vol. 49, pp. 1001-1018.

Kuo, H.Y., Kuo, Y.M., 2012. "Magnetoelectricity in multiferroic particulate

composites with arbitrary crystallographic orientation," Smart Materials & Structures, vol. 21, pp. 105038.

Kuo, H.Y., Slinger, A., Bhattacharya, K., 2010. "Optimization of

magnetoelectricity in piezoelectric-magnetostrictive bilayers," Smart Materials &

Structures, vol. 19, pp. 125010.

Kuo, H.Y., Wang, Y.L., 2012. "Optimization of magnetoelectricity in multiferroic fibrous composites," Mechanics of Materials, pp. 88-99.

Li, J.Y., Dunn, M.L., 1998. "Micromechanics of magnetoelectroelastic composite

materials; average fields and effective behavior," Journal Intelligent Material System and Structures, vol. 9, pp. 404-416.

Li, J.Y., 2000. "Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials," International Journal of

Engineering Science, vol. 38, pp. 1993-2011.

Majumder, S., Bhattacharya, G.S., 2004. "Synthesis and characterization ofl in-situ grown magnetoelectric composites in the BaO-TiO-FeO-CoO system," Ceramics International, vol. 30, pp. 389-392.

Mori, T., Tanaka, K., 1973. "Average stress in matrix and average elastic energy of materials with misfitting inclusions," Acta Metallurgica, vol. 21, pp.

571-574.

Nan, C.W., 1994. "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases," Physical Review B, vol. 50, pp. 6082-6088.

Nan, C.W., Bichurin, M.I., Dong, S., Viehland, D., Srinivasan, G., 2008. "Multiferroic magnetoelectric composites: historical perspective, status, and future directions,"

Journal of Applied Physics, vol. 103, pp. 031101-35.

Nemat-Nasser, S., Hori, M., 1999. Micromechanics: Overall Properties of Heterogeneous Materials, 2 ed.: Elsevier Science.

Pan, E., 2001. "Exact solution for simply supported and multilayered

magneto-electro-elastic plates," Journal of Applied Mechanics-Transactions of the ASME, vol. 68, pp. 608-618.

Qu, J., Cherkaoui, M., 2006. Fundamentals of Micromechanics of Solids: Wiley.

Rado, G.T., Ferrari, J.M., Maisch, W.G., 1984. "Magnetoelectric susceptibility and

magnetic symmetry of magnetoelectrically annealed TbPO4," Physical Review B, vol.29, pp. 4041-4048.

Rivera, J.-P., 1993. "The linear magnetoelectric effect in LiCoPO4 Revisited,"

Ferroelectrics,vol. 161, pp. 147-164.

Ru, C.Q., Schiavone, P., Mioduchowski, A., 1999. “Uniformity of stresses within a three-phase elliptic inclusion in anti-plane shear,” Journal of elasticity, vol. 52, pp.

121-128.

Ryu, J., Carazo, A.V., Uchino, K., Kim, H.E., 2001. "Piezoelectric and magnetostrictive properties of lead zirconate titanate/Ni-ferrite particulate composites," Journal of Electroceramics, vol. 7, pp. 17-24.

Ryu, J., Priya, S., Vazquez, A., Uchino, K.,2001. "Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate Titanate/Terfenol-D laminate composites," Journal of the American Ceramic Society, vol. 84, pp. 2905-2908.

Ryu, J., Priya, S., Uchino, K., Kim, H.E., 2002. "Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials," Journal of Electroceramics, vol. 8, pp.

107-119.

Schmid, H., 1994. "Introduction to the proceedings of the 2nd international conference onmagnetoelectric interaction phenomena in crystals, MEIPIC-2,"

Ferroelectrics, vol. 161,pp. 1-28.

Shi, Z., Wang, C., Liu, X., Nan, C., 2008. "A four-state memory cell based

onmagnetoelectric composite," Chinese Science Bulletin, vol. 53, pp. 2135-2138.

Shodja, H.M., Tabatabaei, S.M., Kamali, M.T., 2005. “A piezoelectric-inhomogeneity system with imperfect interface,” International journal of engineering science, vol. 44, pp. 291-311.

Srinivasan, G., Rasmussen, E.T., Gallegos, J., Srinivasan, R., Bokhan, Y.I., Laletin,

V.M., 2001. "Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides," Physical Review B, vol. 64, pp. 214408-6.

Srinivasan, G., Rasmussen, E.T., Levin, B.J., Hayes, R., 2002. "Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides," Physical Review B, vol. 65, pp. 134402-7.

Srinivasan, G., DeVreugd, C.P., Flattery, C.S., Laletsin, V.M., Paddubnaya, N., 2004.

"Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites," Applied Physics Letters, vol. 85, pp. 2550-2552.

Spaldin, N.A., Fiebig, M., 2005. "The renaissance of magnetoelectric multiferroics.,"

Science, vol. 309, pp. 391-392.

Suchtelen, J.V., 1972. "Product properties:a new application of composite materials,"

Philips Research Reports, vol. 27, pp. 28-37.

Tellegen, B.D.H., 1948. "The gyrator, a new electric network element," Philips Research Reports, vol. 3, pp. 81-101.

Wan, J.G., Liu, J.M., Chand, H.L.W., Choy, C.L., Wang, G.H., Nan, C.W., 2003.

"Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites," Journal of Applied Physics, vol. 93, pp. 9916-9919.

Wang, H.M., Pan, E., Chen, W.Q., 2011. ” Large multiple resonance of

magnetoelectric effect in a multiferroic composite cylinder with an imperfect interface,”

Physica Status Solidi B, vol. 9, pp. 2180-2185.

Wang, Y.J., Or, S.W., Chan, H.L.W., Zhao, X.Y., Luo, H.S., 2008. "Enhanced magnetoelectric effect in longitudinal-transverse mode

Terfenol-D/ Pb(Mg1/3Nb2/3)O3-PbTiO3 laminate composites with optimal crystal cut,"

Journal of Applied Physics, vol. 103, pp. 124511.

Wang , X., Pan, E., 2010. “A circular inhomogeneity with interface slip and diffusion under in-plane deformation,” International Journal of Engineering Science, vol. 48, pp.

1733-1748.

Yang, P., Zhao, K., Yin, Y., Wan, J.G., Zhu, J.S., 2007. "Enhanced magnetoelectric effect with wide frequency peak and many optimized bias magnetic field in Terfenol-D/LiNbO3 composite," Integrated Ferroelectrics, vol. 87, pp. 50-56.

Zeng, R., Kwok, K.W., Chan, H.L.W., Choy, C.L., 2002. "Longitudinal and transverse piezoelectric coefficients of lead zirconate Titanate/Vinylidene

Fluoride-Trifluoroethylene composites with different polarization states," Journal of Applied Physics, vol. 92, pp. 2674-2679.

李振民, 陳錦明, 2009. "多鐵材料 TbMnO3電子結構之異向性," 物理雙月刊, vol. 31, pp.

508-515.

楊大智, 2004. 智能材料與智能系統. 新北市中和區: 新文京開發.

顧宜主編, 林金福等審定,2002. 複合材料. 新北市: 新文京開發.

"IEEE Standard on Piezoelectricity," ANSI/IEEE Std 176-1987, 1987.

http://www.efunda.com. Piezo Material Data.

相關文件