• 沒有找到結果。

(1) 以 Br- 及 TFSI- 為陰離子之聚合後高分子膜的 FTIR 分析結果與高分 子膜結構及官能基皆有相對應。

(2) 以 Br- 及 TFSI- 為陰離子之聚合後高分子膜之 TGA 分析可知道,

前者的 Td 點在 270℃~280℃, 後者的 Td 點在 345℃~380℃。而已 DSC 分析可知道,前者在 120℃~155℃, 後者在-1℃~3.5℃。

(3) 由 TGA 及 DSC 熱分析結果得知,具相同取代基,有架橋性的高分子 離子液體的 Td 及 Tg ,皆會大於沒有架橋性的高分子離子液體,而且 經離子交換後, Tg 點全部下移至約 0 度左右。

(4) 從 XRD 分析可知,以 Br- 及 TFSI- 為陰離子之聚合後高分子膜,皆 為低結晶度的高分子離子液體。

(5) 由 SEM 表面形貌,有網狀結構之高分子離子液體有較強韌的結構。

(6) 由導電度的結果可知,[a]IL 比例愈高、分子間的鏈段鍵結愈不穩定、

導電度愈高;[b]溫度愈高、離子移動性愈好、導電度愈好;[c]聚合後 線性結構較網狀結構之高分子之導電度高。

(7) 元件效率量測得知,PIL-C4-Br- 中比例為 0.1 wt% 的效率表現最好 (η=5.16%) , PIL-C8-Br- 中 比 例 則 以 0.2 wt% 的 效 率 表 現 最 好 (η=4.72%), PIL-C4-TFSI- 中比例 0.1 wt% 的效率表現最好(η=4.74%),

PIL-C4-TFSI- 中比例 0.1 wt% 的效率表現最好(η=3.66%)。

(8) Tg越小、離子遷移率越大,元件效率表現會越好。

(9) 交流阻抗可得知元件內部阻抗關係,由電解質的阻抗大小剛好印證元 件效率高低表現。

111

(10) IPCE 可以得知元件中各層之間的關係,並從中去改善缺點。

(11) 因為這八種材料太易裂解而無法進行歐傑電子能譜分析以便更深入 了解各個材料間的表面組織形態及化學結構,光以 XRD 的結果無法 更進一步證實相對的關係比較。

(12) 未來若有人想要更深入了解並改進此電解質的特性,交流阻抗分析結 果需有等效電路圖去計算其各個係數之間的關係,及計算出各能階圖 關係後,可以更深入了解 IPCE 結果中各成份間吸收光譜間的關係,

以利進行改善。

112

參考文獻

[1] L. C. Chung, “Ionic Liquids: Overview, challenges and opportunities”, industrial materials, 325, 68-76 (2014).

[2] D. Mecerreyes, “Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes”, Pro. Poly. Sci., 36, 1629-1648 (2011).

[3] 世界氣象組織(WMO)全球氣候狀況聲明(2014).

[4] 張星辰, “離子液體-從理論基礎到研究進展”, 化學工業出版社, 第一 章(2009).

[5] Walden P. Bull Acad. Impér. Sci. (St. Pétersbourg), 8, 405-422 (1914).

[6] F. H. Hurley and T. P. Wier, “The electrodeposition of aluminium from nonaqueous solutions at room temperature”, J. Electrochem Soc., 98, 207-212 (1951).

[7] F. H. Hurley and T. P. Wier, “Electrodeposition of metals from fused quaternary ammonium salts”, J. Electrochem Soc., 98, 203-206 (1951).

[8] H. L. Chum, V. R. Koch, L. L. Miller and R. A. Osteryong, J. Am. Chem.

Soc., 97, 3264 (1975).

[9] C. L. Hussey, “Room temperature haloaluminate ionic liquids novel solvents for transition metal solution chemistry”, Pure & Appl. Chem., 60, 1763-1772 (1988).

[10] J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey,

“Dialkylimidazolium chloroaluminate melts: A new class of

room-113

temperature ionic liquids for electrochemistry, spectroscopy and synthesis”, Inorg. Chem., 21, 1263-1264 (1982).

[11] M. D. Bermúdez, A. E. Jiménez, J. Sanes and F. J. Carrión, “Ionic liquids as advanced lubricant fluids”, Molecules, 14, 2890-2891(2009).

[12] P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M.

Gratzel, “Hydrophobic, highly conductive ambient-temperature molten salts”, Inorg. Chem., 35, 1168 (1996).

[13] M. C. Chang, “The characteristics and chemical application of ionic liquids” , Industrial Materials, 325, 77-83 (2014).

[14] J. Yuan and M. Antonietti, “Poly(ionic liquid)s: Polymers expanding classical property profiles”, Polymer, 52, 1469-1471 (2011).

[15] 崔孟晉, “染料敏化太陽電池電解質材料近況發展”, 工業材料雜誌, 257(2008).

[16] J. Lua, F. Yana and J. Texter, “Advanced applications of ionic liquids in polymer science’’, Pro. Poly. Sci., 34, 431-448 (2009).

[17] P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram and M.

Gratzel, “Hydrophobic, highly conductive ambient-temperature molten salts”, Inorg. Chem., 35, 1168-1178 (1996).

[18] M. Wang, Y. Lin and X. Xiao, “The application of ionic liquid on dye-sensitized TiO2 nano-crystalline solar cells”, 化 學 通 報 , 4, 268-269 (2004).

114

[19] J. Yuan, D. Mecerreyes and M. Antonietti, “Poly(ionic liquid)s: An update”, J. Poly. Sci., 38, 1009-1011 (2013).

[20] H. Nakajima and H. Ohno, “Preparation of thermally stable polymer electrolytes from imidazolium-type ionic liquid derivatives’’, Polymer, 46, 11499-11504 (2005).

[21] N. Matsumi, K. Sugai, M. Miyake and H. Ohno, “Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes’’, Macromolecules, 39, 6924-6927 (2006).

[22] W. X. Zhang, Y. Li, C. X. Lin, Q. An, C. G. Tao, Y. B. Gao and G. T. Li,

“Electrochemical polymerization of imidazolium-ionic liquids bearing a pyrrole moiety’’, J. Poly. Sci. Part A Poly. Chem., 46, 4151-4161 (2008).

[23] H. Mori, M. Yahagi and T. Endo, “RAFT polymerization of N-vinylimidazolium salts and synthesis of thermoresponsive ionic liquid block copolymers’’, Macromocules, 42, 8082-8092 (2009).

[24] J. Yuan and M. Antonietti, “Poly(ionic liquid)s: Polymers expanding classical property profiles”, Polymer, 52, 1477-1481 (2011).

[25] O. Green, S. Grubjesic, S. Lee and M. A. Firestone, “The design of polymeric ionic liquids for the preparation of functional materials’’,J.

Macro. Sci., 49, 340-355 (2009).

[26] M. A. Firestone, J. A. Dzielawa, P. Zapol, L. A. Curtiss, S. Seifert and M. L. Dietz, “Lyotropic liquid-crysralline gel formation in a room temperature ionic liquid’’, Langmuir, 18, 7258-7260 (2002).

115

[27] E. Naudin, H. A. Ho, M. A. Bonin, L. Breau and D. Belanger, “Preparation and characterization of poly[2,3-dimethyl-1-(4-thien-3-ylbenzyl)-1h-imidazol-3-ium] bis((trifluoromethyl)sulfonyl)imide’’, Macromolecules, 35, 4983-4987 (2002).

[28] B. Wu, D. Hu, Y. Kuang, B. Liu, X. Zhang and J. Chen.,

“Functionalization of carbon nanotubes by an ionic-liquid polymer:

dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol’’, Angew. Chem. Inter. Ed., 48, 4751-4754 (2009).

[29] G. Zhang, X. Liu, B. Li and Y. Bai, “Free-radical solution copolymerization of the ionic liquid monomer 1-vinyl-3-ethylimidazolium bromide with acrylonitrile’’, J. Appl. Poly. Sci., 112, 3337-3340 (2009).

[30] V. Polshettiwar and R. S. Varma, “Microwave-assisted organic synthesis and transformations using benign reaction media’’, Acc. Chem. Res., 41, 629 (2008).

[31] 黃琮勝, “電洞材料在固態染料敏化太陽能電池的比較研究’’, 國立高 雄大學化材所碩士論文 (2014).

[32] M. Grätzel, “Photoelectrochemical cells”, Nature, 414, 338-344 (2001).

[33] 廖紹宏, “全有機染料敏化太陽能電池研究”, 國立高雄大學化材所碩 士論文 (2009).

116

[34] R. Serra, “Renewable and sustainable energy reviews”, Daylighting, 5, 118 (1998).

[35] 劉茂煌, “奈米光電池’’, 工業材料雜誌, 203, 93 (2003).

[36] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama and H. Arakawa,

“Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells’’, Sol. Energy Mater. Sol. Cells, 70, 151–161 (2001).

[37] U. Bach, D. Lupo and M Grätzel, “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”, Nature, 395, 583 (1998).

[38] 汪建民, 林敬二, 江志強, “材料分析第二版-紅外線光譜分析”, 473-493, 英杰企業有限公司, 台北, 台灣(2014).

[39] 汪建民, 王朝弘, 陳信文, “材料分析第二版-熱分析”, 564-614, 英杰 企業有限公司, 台北, 台灣(2014).

[40] 林麗娟, “ X光繞射原理及其應用”, 工業材料雜誌, 86, 100-109 (1994).

[41] 林智仁, "場發射式掃描式電子顯微鏡簡介", 工業材料雜誌, 181, 94-99 (2002).

[42] W. Lu, A. G. Fadeev, B. Qi, E. Smela, B. R. Mattes, J. Ding, G. M. Spinks, J. Mazurkiewicz, D. Zhou, G. G. Wallace, D. R. MacFarlane, S. A.

Forsyth and M. Forsyth, “Use of ionic liquids for π-conjugated polymer electrochemical devices”, Science, 297, 983-987 (2002).

117

[43] J. Yuan and M. Antonietti, “Poly(ionic liquid) latexes prepared by dispersion polymerization of ionic liquid monomers’’, macromolecules, 44, 744-746 (2011).

[44] L. G. Wade, Jr., “Organic chemistry’’, 510-554, PEARSON, Upper Saddle River, USA (2011).

[45] Y. Yagci, F. Yilmaz, S. Kiralp and L. Toppare, “Photoinduced polymerization of thiophene using iodonium salt’’, Macromol. Chem.

Phys., 206, 1180-1182 (2005).

[46] J. Kiefer, J. Fries and A. Leipertz, “Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium ethylsulfate”, J. Appl. Spectrosc., 61, 1306-1311 (2007).

[47] C. H. Yang, S. H. Liao, Y. K. Sun, Y. T. Choang, T. L. Wang, Y. T. Shieh and W. C. Lin, “Optimization of multiple electron donor and acceptor in carbazole-triphenylamine-based molecules for application of dye-sensitized solar cells’’, J. Am. Chem. Soc., 21789-21793 (2010).

[48] 孫宇光, “三苯胺/乙烯二氧噻吩系全有機染料太陽能電池”, 國立高 雄大學化材所碩士論文 (2011).

[49] C. L. Hussey, “Room temperature haloaluminate ionic liquids novel solvents for transition metal solution chemistry”, Pure & Appl. Chem., 60, 1763-1772 (1988).

118

[50] Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide and L. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%”, Jpn. J. Appl.

Phys., 45, L638-L639 (2006).

[51] NEWPORT公司操作說明書, “IPCE量子效率量測”, (2013).

[52] M. Wang, Y. Lin, X. Zhou, X. Xiao, L. Yang, S. Feng and X. Li,

“Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells”, Mater. Chem. Phys., 103, 62-65 (2008).

[53] 吳春桂, “染料敏化太陽能電池用之釕錯合物染料”, 中央大學校訊期 刊特稿, 172 (2011).

相關文件