• 沒有找到結果。

5-1 結論

根據前四章的論敘、模擬與討論的內容,將結論歸納如下:

1. 本文利用有限元素模擬BTO

[ ]

100 /CFO

[ ]

100 纖維複合材料之結果,與Li 和 Dunn[1]使用 Mori-Tanaka 模式模擬BTO

[ ]

001/CFO

[ ]

001之結果相吻合,並 利用相同的有限元素設定模式,模擬不同極化方向組合之壓電壓磁複合材 料。

2. 從

BTO

/

CFO

模擬結果得知,BTO

[ ]

001/CFO

[ ]

001 最佳之磁電電壓係數

α E * , 11

為-0.0306V/cmOe 與

α * E , 33

為1.1494V/cmOe。經由改變材料之極化方向,得

到最佳之

α E * , 11

為-1.3441V/cmOe 與

α * E , 33

為-5.8250V/cmOe,因此

α E * , 11

提升約 44 倍而

α * E , 33

提升約5 倍。

3. 從

CFO

/

BTO

模擬結果得知,CFO

[ ]

001/BTO

[ ]

001 最佳之磁電電壓係數

α E * , 11

為-0.0244V/cmOe 與

α * E , 33

為1.2288V/cmOe。經由改變材料之極化方向,得

到最佳之

α E * , 11

為-2.4823V/cmOe 與

α * E , 33

為-6.2357V/cmOe,因此

α E * , 11

提升約

101 倍而

α * E , 33

提升約5 倍。

4. 由正方形單位晶胞與正六邊形單位晶胞模擬結果得知,正六邊形單位晶胞較 接近Mori-Tanaka 模式之結果。其原因是因為 Mori-Tanaka 模式可以模擬從 f = 0 到 f = 1 的複合材料,因此可以模擬內含物較緊密之複合材料。正六邊 形單位晶胞亦屬於緊密堆積,它的體積比最大約f = 0.906,而正方形單位晶 胞的體積比僅能達至f = 0.785。所以正六邊形單位晶胞的結果會比正方形單 位晶胞來的接近Mori-Tanaka 模式。

95

5-2 未來展望

1. 本文是選擇圓形纖維結構為模擬對象,然而,實驗中多數採用方形纖維結構 置入母材內,觀察磊晶薄膜生長情形並量測其磁電耦合效應。因此未來為了 符合實驗的幾何形狀,可利用本文之有限元素模型模擬方形纖維複合材料之 行為。

2. 複合材料除了纖維結構的複合形式外,還有層板結構與顆粒結構複合形式。

因此未來可探討材料極化方向對壓電壓磁顆粒複合材料磁電耦合行為之影 響,並求其最佳之磁電耦合效應。

96

參考文獻

[1] J. Y. Li and M. L. Dunn, "Micromechanics of magnetoelectroelastic composite material: average fields and effective behavior," Journal of Intelligent

Material Systems and Structures, vol. 9, pp. 404-416, 1998.

[2] N. A. Spaldin and M. Fiebig, "The renaissance of magnetoelectric multiferroics," Science, vol. 309, pp. 391-392, 2005.

[3] W. Eerenstein, N. D. Mathur, and J. F. Scott, "Multiferroic and magnetoelectric materials," Nature, vol. 442, pp. 759-765, 2006.

[4] M. Ashby, H. Shercliff, and D. Cebon, Marerials

Engineering,Science,Processing and Design: Butterwirth-Heinemann, 2007.

[5] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media. New York: Butterworth-Heinemann, 1984.

[6] D.N.Astrov, "The magnetoelectric effect in antiferromagnetic," Soviet Physics JETP, vol. 11, pp. 708-709, 1960.

[7] G. T. Rado and V. J. Folen, "Observation of the magnetically induced

magnetoelectric effect and evidence for antiferromagnetic domains," Physical Review Letters, vol. 7, pp. 310-311, 1961.

[8] T. R. McGuire, E. J. Scott, and F. H. Grannis, "Antiferromagnetism in a Cr

2

O

3

crystal," Physical Review, vol. 102, pp. 1000-1003, 1956.

[9] G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, "Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides," Physical Review B, vol. 65, pp. 134402-7, 2002.

[10] M. Fiebig, "Revival of the magnetoelectric effect," Journal of Physics D:

Applied Physics, vol. 38, pp. 123-152, 2005.

[11] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.

Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K.

M. Rabe, M. Wuttig, and R. Ramesh, "Epitaxial BiFeO

3

multiferroic thin film heterostructures," Science, vol. 299, pp. 1719-1722, March 14 2003.

[12] J. v. Suchtelen, "Product properties:a new application of composite materials,"

Philips Research Reports vol. 27, pp. 28-37, 1972.

[13] J. v. d. Boomgaard, D. R. Terrell, R. A. J. Born, and H. F. J. I. Giller, "An in situ grown eutectic magnetoelectric composite material part I composition and unidirectional solidification," Journal of Materials Science, vol. 9, pp.

1705-1709, 1974.

[14] J. v. d. Boomgaard and R. A. J. Born, "A sintered magnetoelectric composite material BaTiO

3

-Ni(Co,Mn)Fe

2

O

4

," Journal of Materials Science, vol. 13, pp.

97

1538-1548, 1978.

[15] T. G. Lupeiko, S. S. Lopatin, I. V. Lisnevskaya, and B. I. Zvyagintsev,

"Magnetoelectric composite materials based on lead zirconate titanate and nickel ferrite," Inorganic Materials, vol. 30, pp. 1353-1356, 1994.

[16] R. Mahajan, K. Patankar, M. Kothale, and S. Patil, "Conductivity, dielectric behaviour and magnetoelectric effect in copper ferrite-barium titanate composites," Bulletin of Materials Science, vol. 23, pp. 273-279, 2000.

[17] Y. R. Dai, P. Bao, J. S. Zhu, J. G. Wan, H. M. Shen, and J. M. Liu, "Internal friction study on CuFe

2

O

4

/PbZr

0.53

Ti

0.47

O

3

composites," Journal of Applied Physics, vol. 96, pp. 5687-5690, 2004.

[18] G. Srinivasan, C. P. DeVreugd, C. S. Flattery, V. M. Laletsin, and N.

Paddubnaya, "Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites," Applied Physics Letters, vol. 85, pp.

2550-2552, 2004.

[19] S. Majumder and G. S. Bhattacharya, "Synthesis and characterization ofl in-situ grown magnetoelectric composites in the BaO-TiO-FeO-CoO system "

Ceramics International, vol. 30, pp. 389-392, 2004.

[20] L. Fuentes, M. GarcÍa, D. Bueno, M. E. Fuentes, and A. Muñoz,

"Magnetoelectric effect in Bi

5

Ti

3

FeO

15

ceramics obtained by molten salts synthesis," Ferroelectrics, vol. 336, pp. 81 - 89, 2006.

[21] J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, "Piezoelectric and magnetostrictive properties of lead zirconate titanate/Ni-ferrite particulate composites," Journal of Electroceramics, vol. 7, pp. 17-24, 2001.

[22] J. Ryu, S. Priya, and K. Uchino, "Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials," Journal of Electroceramics, vol.

8, pp. 107-119, 2002.

[23] J. Li, J. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A.

K. Zvezdin, and D. Viehland, "Dramatically enhanced polarization in (001), (101), and (111) BiFeO

3

thin films due to epitiaxial-induced transitions,"

Applied Physics Letters, vol. 84, pp. 5261-5263, 2004.

[24] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan,

"Multiferroic magnetoelectric composites: historical perspective, status, and future directions," Journal of Applied Physics, vol. 103, pp. 031101-35, 2008.

[25] S. Priya, R. Islam, S. Dong, and D. Viehland, "Recent advancements in magnetoelectric particulate and laminate composites," Journal of Electroceramics, vol. 19, pp. 149-166, 2007.

[26] G. Srinivasan, "Magnetoelectric composites," Annual Review of Materials Research, vol. 40, pp. 153-178, 2010.

98

[27] G. Harshe, J. P. Dougherty, and R. E. Newnham, "Theoretical modelling of 3-0/0-3 magnetoelectric composites," International Journal of Applied Electromagnetics in Materials, vol. 4, pp. 161-171, 1993.

[28] C.-W. Nan, "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases," Physical Review B, vol. 50, pp. 6082-6088, 1994.

[29] Y. Benveniste, "Magnetoelectric effect in fibrous composites with

piezoelectric and piezomagnetic phases," Physical Review B, vol. 51, pp.

16424-16427, 1995.

[30] T.-L. Wu and J. H. Huang, "Closed-form solutions for the magnetoelectric coupling coefficients in fibrous composites with piezoelectric and

piezomagnetic phases," International Journal of Solids and Structures, vol. 37, pp. 2981-3009, 2000.

[31] J. Lee, J. G. Boyd Iv, and D. C. Lagoudas, "Effective properties of three-phase electro-magneto-elastic composites," International Journal of Engineering Science, vol. 43, pp. 790-825, 2005.

[32] R. Zeng, K. W. Kwok, H. L. W. Chan, and C. L. Choy, "Longitudinal and transverse piezoelectric coefficients of lead zirconate titanate/vinylidene fluoride-trifluoroethylene composites with different polarization states,"

Journal of Applied Physics, vol. 92, pp. 2674-2679, 2002.

[33] G. C. Sih, R. Jones, and Z. F. Song, "Piezomagnetic and piezoelectric poling effects on mode I and II crack initiation behavior of magnetoelectroelastic materials," Theoretical and Applied Fracture Mechanics, vol. 40, pp. 161-186, 2003.

[34] G. C. Sih and Z. F. Song, "Magnetic and electric poling effects associated with crack growth in BaTiO

3

-CoFe

2

O

4

composite," Theoretical and Applied

Fracture Mechanics, vol. 39, pp. 209-227, 2003.

[35] Z. Shi, C. W. Nan, J. M. Liu, D. A. Filippov, and M. I. Bichurin, "Influence of mechanical boundary conditions and microstructural features on

magnetoelectric behavior in a three-phase multiferroic particulate composite,"

Physical Review B, vol. 70, pp. 134417-6, 2004.

[36] H. Chen, L. Tianquan, C. Chen, and W. Cao, "Theoretical studies on the pyroelectric properties of two component composite ferroelectric thin film,"

Physics Letters A, vol. 360, pp. 357-361, 2006.

[37] J. H. Huang and W.-S. Kuo, "The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusions," Journal of Applied Physics, vol. 81, pp. 1378-1386, 1997.

[38] 齊孝定, "多鐵性(multiferroic)材料的發展及潛在應用,"

物理雙月刊

, vol.

31, pp. 461-467, 2009.

99

[39] A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y.-H. Chu, L. W.

Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R.

Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, "Linear and nonlinear optical properties of BiFeO

3

," Applied Physics Letters, vol. 92, pp. 121915-3, 2008.

[40] "IEEE standard on piezoelectricity," ANSI/IEEE Std 176-1987, p. 23, 1988.

[41] J. Qu and M. Cherkaoui, Fundamentals of micromechanics of solids, 2006.

[42] J. D. Eshelby, "The determination of the elastic field of an ellipsoidal

Inclusion, and related problems," Proceedings of the Royal Society of London.

Series A. Mathematical and Physical Sciences, vol. 241, pp. 376-396, August 20 1957.

[43] J. Y. Li, "Magnetoelectroelastic multi-inclusion and inhomogeneity problems and their applications in composite materials," International Journal of Engineering Science, vol. 38, pp. 1993-2011, 2000.

[44] J. Y. Li and M. L. Dunn, "Anisotropic coupled-field inclusion and

inhomogeneity problems," Philosophical Magazine A, vol. 77, pp. 1341-1350, 1998.

[45] T. Mori and K. Tanaka, "Average stress in matrix and average elastic energy of materials with misfitting inclusions," Acta Metallurgica, vol. 21, pp. 571-574, 1973.

[46] G. B. Arfken and H. J. Weber, Mathematical methods for physicists, Angela Dooley ed. San Diego, 2001.

[47] W. J. Drugan and J. R. Willis, "A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites," Journal of the Mechanics and Physics of Solids, vol. 44, pp.

497-524, 1996.

[48] C. Kittel, Imtroduction to solid state physics, 2005.

[49] S. Li, "General unit cells for micromechanical analyses of unidirectional composites," Composites Part A: Applied Science and Manufacturing, vol. 32, pp. 815-826, 2001.

[50] H. Berger, S. Kari, U. Gabbert, R. Rodriguez-Ramos, J. Bravo-Castillero, and R. Guinovart-Diaz, "Calculation of effective coefficients for piezoelectric fiber composites based on a general numerical homogenization technique,"

Composite Structures, vol. 71, pp. 397-400, 2005.

[51] Y. S. Oh, S. Crane, H. Zheng, Y. H. Chu, R. Ramesh, and K. H. Kim,

"Quantitative determination of anisotropic magnetoelectric coupling in BiFeO

3

-CoFe

2

O

4

nanostructures," Applied Physics Letters, vol. 97, pp.

052902-3, 2010.

100

[52] J. X. Zhang, Y. L. Li, Y. Wang, Z. K. Liu, L. Q. Chen, Y. H. Chu, F. Zavaliche, and R. Ramesh, "Effect of substrate-induced strains on the spontaneous polarization of epitaxial BiFeO

3

thin films," Journal of Applied Physics, vol.

101, pp. 114105-6, 2007.

101

附錄 A BiFeO 3 置入 CoFe 2 O 4 之壓電壓磁複合材料

近年來由於技術提升,Oh[51]提出鐵電磁材料 BiFeO 3

可於其他方向之晶面 得到比以往更佳之磁電耦合效應。為了得知BFO/CFO 複合材料之耦合效應,本 文將探討BFO

[ ]

001 和BFO

[ ]

100 材料性質所產生的磁電耦合效應。利用BFO

[ ]

001 材料性質(表 A-1),可得到BFO

[ ]

001和BFO

[ ]

100 的矩陣形式。另外本文模擬 BFO/CFO 複合材料於任意極化方向之最佳磁電耦合效應,其結果可作為實驗參 考基準。

表A-1 BFO 材料性質[39, 52]

BiFeO

3

) GPa

11 (

C 298 e

33

( C m

2

) − 979 . 88

) GPa

12 (

C 162 κ

11

( C

2

Nm

2

) 8 . 85 × 10

10

)

GPa

44 (

C 62 q

15

( m A ) 0

) m C

(

2

e

15

4 . 058 q

31

( m A ) 0

) m C

(

2

e

16

− 40 . 582 q

33

( m A ) 0

) m C

(

2

e

22

40 . 582 μ

11

( Ns

2

C

2

) 5 × 10

6

)

m C

(

2

e

31

− 503 . 04

102

BFO[001]

=

L

BFO[100]

=

L

103

會參與耦合的行為,而CFO 材料中的

q 15

項因應BFO 的耦合行為產生平均磁場

H 1

,因此可以得到複合材料的λ ;如果提供平均電場

* 11 E 2

,則BFO 中的e 項

24

會參與耦合的行為,而CFO 材料中的q 項會因應 BFO 的耦合行為產生平均磁

24

H 2

,因此會得到複合材料的λ ;如果提供平均電場

* 22 E 3

,則BFO 中的

e 31

e 32

e 33

項會參與耦合的行為,而CFO 材料中的

q 31

q 32

q 33

項會因應BFO 的 耦合行為產生平均磁場

H 3

,因此會得到複合材料的

λ * 33

本節模擬得到BFO

[ ]

001 /CFO

[ ]

001 之等效磁電電壓係數

α * E

,其模擬結果(圖 A-2)發現當內含物的體積比 f = 0.67 時,在 MT 的曲線中得到α

* E , 11

的極值

-0.0116V/cmOe。由於材料晶格對稱性的關係,

λ * 22

會等於

λ * 11

κ * 22

會等於

κ 11 *

, 所以α

* E , 22

也會與α

E * , 11

同在f = 0.67 時,極值達至-0.0116V/cmOe。當 f = 0.25,α

E * , 33

達至極值1.4394V/cmOe,且α

* E , 33

幾乎為一個定值;當f = 0.91,λ

* 11

、λ

* 22

極值約 -7.3969×10

-12

Ns/VC。當 f = 0.50,λ

* 33

極值約2.5327×10

-7

Ns/VC。

104

Volume Fraction of Inclusion C

*

(P a)

Volume Fraction of Inclusion e

*

(C /m

2

)

Volume Fraction of Inclusion κ

*

(C

2

/Nm

2

)

Volume Fraction of Inclusion q

*

(N /A m )

Volume Fraction of Inclusion μ

*

(N s

2

/C

2

)

Volume Fraction of Inclusion

λ

*

(N s/ V C )

105

(a)

α * E , 11

,

α E * , 22

(b)

α * E , 33

圖A-2

α * E

與 f 之關係

0 0.2 0.4 0.6 0.8 1

-0.014 -0.012 -0.01 -0.008 -0.006 -0.004 -0.002 0

Volume Fraction of Inclusion

α E, * 11 , α * E, 2 2 ( V /c m O e)

MT SQU HEX

BFO[001]/CFO[001]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.5 1 1.5

Volume Fraction of Inclusion

α * E, 3 3 ( V /c m O e)

MT SQU HEX

BFO[001]/CFO[001]

106

A-2

BFO

[ ]

100 置入CFO

[ ]

001

根據(A.2)式得知BFO

[ ]

100 之性質,對BFO

[ ]

100 /CFO

[ ]

001 提供平均電場 E 時,則 BFO 中的

1

e 、

11

e 、

12 e 13

項會參與耦合的行為,從(3.3)式知道 CFO 材 料性質中的

q 31

q 32

q 33

項因應BFO 的耦合行為產生平均磁場 H ,因此得到

3

複合材料的

λ * 13

;如果提供平均電場 E ,則 BFO 中的

2

e 、

22 e 23

項會參與耦合的 行為,而CFO 材料中的

q 32

q 33

項會因應BFO 的耦合行為產生平均磁場 H ,

3

因此得到複合材料的

λ * 23

;如果提供平均電場 E ,則 BFO 中的

3 e 34

e 35

項會參 與耦合的行為,相對的CFO 中的q 、

24 q 15

項因應BFO 的耦合行為產生平均磁場

H 與

2

H ,因此得到複合材料的

1 λ * 32

λ * 31

由等效性質(圖 A-3)得知BFO

[ ]

100 /CFO

[ ]

001的

λ * 13

f = 0.44,極值達到 -6.2007×10

-11

Ns/VC。

λ * 23

f = 0.44,極值達到 6.2007×10

-10

Ns/VC。

λ * 31

f = 0.99,

極值達到5.6523×10

-9

Ns/VC。

λ * 32

f = 0.86,極值達到-1.9761×10

-9

Ns/VC。

另外因為λ 、

* 11

λ 、

* 22 λ * 33

數值小於

λ * 13

λ * 23

λ * 31

λ * 32

10 3

倍,因此視作為 0。由於沒有

λ * 11

λ * 22

和λ

* 33

等主對角線上的值,所以主對角線上的

α * E

為0;而因 為κ

13 *

、κ

23 *

、κ

31 *

和κ

32 *

為0 所以α

* E , 13

、α

* E , 23

、α

E * , 31

和α

E * , 32

不存在。

107

Volume Fraction of Inclusion C

*

(P a)

Volume Fraction of Inclusion e

*

(C /m

2

)

Volume Fraction of Inclusion κ

*

(C

2

/Nm

2

)

Volume Fraction of Inclusion q

*

(N /A m )

Volume Fraction of Inclusion μ

*

(N s

2

/C

2

)

Volume Fraction of Inclusion

λ

*

(N s/ V C )

108

A-3

BFO

[ ]

001置入CFO

[ ]

100

由(4.3)式知道CFO

[ ]

100 的材料性質,因此當對BFO

[ ]

001/CFO

[ ]

100 提供平 均電場 E ,則 BFO 中的

1 e 15

e 16

項會參與耦合的行為,而CFO 材料性質中的

q 35

q 26

項因應BFO 的耦合行為產生平均磁場 H 、

3

H ,因此得到複合材料的

2 λ * 13

與λ ;如果提供平均電場

* 12

E ,則 BFO 中的

2

e 、

21

e 項會參與耦合的行為,而

22

CFO 材料中的q 、

11

q 項會因應 BFO 的耦合行為產生平均磁場

12

H ,因此會得

1

到複合材料的λ ;如果提供平均電場

* 21

E ,則 BFO 中的

3 e 31

e 32

e 33

項會參與 耦合的行為,相對的CFO 中的q 、

11

q 、

12 q 13

項因應BFO 的耦合行為產生平均磁 場 H ,因此得到複合材料的

1 λ * 31

由等效性質(圖 A-4)得知BFO

[ ]

001/CFO

[ ]

100 的λ 於 f = 0.92,極值達到

* 12

3.3276×10

-10

Ns/VC。

λ * 13

f = 0.46,極值達到 1.9103×10

-7

Ns/VC。λ 於 f = 0.91,

* 21

極值達到2.6019×10

-9

Ns/VC。

λ * 31

f = 0.92,極值達到-8.0830×10

-10

Ns/VC。

另外因為λ 、

* 11

λ 、

* 22 λ * 33

數值小於λ 、

* 12 λ 13 *

、λ 與

* 21 λ * 31

10 3

倍,所以視作為 0。由於沒有

λ 11 *

λ * 22

和λ

* 33

等主對角線上的值,所以主對角線上的

α * E

也為0; κ 、

12 *

*

κ

13

、κ 和

21 *

κ

31 *

為0,所以α

E * , 12

、α

* E , 13

、α

E * , 21

和α

E * , 31

不存在。

109

Volume Fraction of Inclusion C

*

(P a)

Volume Fraction of Inclusion e

*

(C /m

2

)

Volume Fraction of Inclusion κ

*

(C

2

/Nm

2

)

Volume Fraction of Inclusion q

*

(N /A m )

Volume Fraction of Inclusion μ

*

(N s

2

/C

2

)

Volume Fraction of Inclusion

λ

*

(N s/ V C )

110

A-4

BFO

[ ]

100 置入CFO

[ ]

100

由於在A-2 與 A-3 節得BFO

[ ]

100 /CFO

[ ]

001與BFO

[ ]

001/CFO

[ ]

100 等複合材 料之耦合結果,因此當BFO 與 CFO 之極化方向皆是

[ ]

100 的時候,則BFO

[ ]

100 /

[ ]

100

CFO 將得到新的耦合性質。

當對BFO

[ ]

100 /CFO

[ ]

100 提供平均電場 E ,則 BFO 中的

1

e 、

11

e 、

12 e 13

項會 參與耦合的行為,而CFO 材料性質中的q 、

11

q 、

12 q 13

項因應BFO 的耦合行為產 生平均磁場 H ,因此得到複合材料的

1

λ ;如果提供平均電場

* 11

E ,則 BFO 中

2

e 26

項會參與耦合的行為,而CFO 材料中的

q 26

項因應BFO 的耦合行為產生平 均磁場 H ,因此會得到複合材料的

2

λ ;如果提供平均電場

* 22

E ,則 BFO 中的

3 e 35

項會參與耦合的行為,相對的CFO 中的

q 35

項因應BFO 的耦合行為產生平均 磁場 H ,因此得到複合材料的

3 λ * 33

由等效性質(圖 A-5)得知BFO

[ ]

100 /CFO

[ ]

100 的λ 、

* 11

λ 、

* 22 λ * 33

與κ 、

11 *

κ 、

22 * κ 33 *

, 也就可以得知α

E * , 11

、α

* E , 22

與α

E * , 33

(圖 A-6)。當 f = 0.96 時,α

E * , 11

極值達至

0.4574V/cmOe。當 f = 0.51 時,α

E * , 22

極值達至-1.0089V/cmOe。當 f = 0.39 時,α

E * , 33

極值達至-1.5657V/cmOe;當 f = 0.99 時,

λ 11 *

極值達至3.9077×10

-9

Ns/VC。當 f = 0.86 時,λ 極值達至-3.7611×10

* 22 -10

Ns/VC。當 f = 0.53 時,

λ * 33

極值達至

-5.2171×10

-9

Ns/VC。

111

Volume Fraction of Inclusion C

*

(P a)

Volume Fraction of Inclusion e

*

(C /m

2

)

Volume Fraction of Inclusion κ

*

(C

2

/Nm

2

)

Volume Fraction of Inclusion q

*

(N /A m )

Volume Fraction of Inclusion μ

*

(N s

2

/C

2

)

Volume Fraction of Inclusion

λ

*

(N s/ V C )

112

(a)

α * E , 11

(b)

α E * , 22

(c)

α E * , 33

圖A-6

α * E

與 f 之關係

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Volume Fraction of Inclusion α

* E,11

( V /cm O e)

MT SQU HEX

BFO[100]/CFO[100]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Volume Fraction of Inclusion α

* E,22

( V /cm O e)

MT SQU HEX

BFO[100]/CFO[100]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Volume Fraction of Inclusion α

* E,33

( V /cm O e)

MT SQU HEX

BFO[100]/CFO[100]

113

A-5 結論

綜合 A-1 到 A-4 節之模擬,可將得到的磁電電壓係數、磁電耦合係數分別 整理成表A-2 與表 A-3。其中可發現當極化方向為

[ ]

100 時,等效磁電電壓係數

* 11 ,

α

E

從-0.0116V/cmOe 提升到 0.4574V/cmOe,提升了 39 倍;等效磁電電壓係 數α

* E , 22

從-0.0116V/cmOe 提升到-1.0089V/cmOe,提升了 86 倍;等效磁電電壓 係數α

E * , 33

從1.4394V/cmOe 提升到-1.5657V/cmOe,提升了 1.08 倍。

表A-2 極化方向與磁電電壓係數之關係

Ⅰ Ⅱ Ⅲ Ⅳ

(V/cmOe)

* 11 ,

α E

-0.0116

( f = 0.67)

- - 0.4574

( f = 0.96)

(V/cmOe)

* 22 ,

α E

-0.0116

( f = 0.67)

- -

-1.0089 ( f = 0.51)

(V/cmOe)

* 33 ,

α E

1.4394

( f = 0.25)

- - -1.5657

( f = 0.39)

Ⅰ:BFO

[ ]

001 /CFO

[ ]

001 Ⅱ:BFO

[ ]

100 /CFO

[ ]

001

Ⅲ:BFO

[ ]

001 /CFO

[ ]

100 Ⅳ:BFO

[ ]

100 /CFO

[ ]

100

114

表A-3 極化方向與磁電耦合係數之關係

Ⅰ Ⅱ Ⅲ Ⅳ

) Ns/VC

* (

λ

11

-7.3969×10

-12

( f = 0.91)

- - 3.9077×10

-9

( f = 0.99)

) Ns/VC

* (

2

λ

1

- - 3.3276×10

-10

( f = 0.92)

) Ns/VC

*

(

3

λ 1

- -6.2007×10

-11

( f = 0.44)

1.9103×10

-7

( f = 0.46)

) Ns/VC

* (

λ

21

- - 2.6019×10

-9

( f = 0.91)

) Ns/VC

* (

λ

22

-7.3969×10

-12

( f = 0.91)

- - -3.7611×10

-10

( f = 0.86)

) Ns/VC

*

(

λ 23

- 6.2007×10

-10

( f = 0.44)

- -

) Ns/VC

*

(

λ 31

- 5.6523×10

-9

( f = 0.99)

-8.0830×10

-10

( f = 0.92)

) Ns/VC

*

(

λ 32

- -1.9761×10

-9

( f = 0.86)

- -

) Ns/VC

*

(

λ 33

2.5327×10

-7

( f = 0.50)

- - -5.2171×10

-9

( f = 0.53)

Ⅰ:BFO

[ ]

001 /CFO

[ ]

001 Ⅱ:BFO

[ ]

100 /CFO

[ ]

001

Ⅲ:BFO

[ ]

001 /CFO

[ ]

100 Ⅳ:BFO

[ ]

100 /CFO

[ ]

100

115

附錄 B CoFe 2 O 4 置入 BiFeO 3 之壓電壓磁複合材料

B-1

CFO

[ ]

001 置入BFO

[ ]

001

利用Mori-Tanaka 微觀力學模型與有限元素法探討CFO

[ ]

001置入BFO

[ ]

001 形式之複合材料(圖 B-1),並將其表示為CFO

[ ]

001 /BFO

[ ]

001。當f = 0 時代表材 料還未置入任何的CFO,材料呈現完整的 BFO 性質,而當 f = 1 時,則代表 CFO 完全取代BFO,呈現完整的 CFO 性質。在這過程中,複合材料的等效性質會由 原本BFO 的性質慢慢轉變為 CFO 的性質。

[ ]

001

CFO /BFO

[ ]

001之耦合情形,當對其提供平均磁場

H 1

時,CFO 中的

q 15

項會參與耦合的行為,而BFO 材料中的

e 15

項因應CFO 的耦合行為產生電場 E ,

1

因此可以得到複合材料的λ ;如果提供平均磁場

* 11

H ,則 CFO 中的

2

q 項會參

24

與耦合的行為,而BFO 中的e 會因應 CFO 的耦合行為產生均電場

24

E ,因此

2

會得到複合材料的λ ;如果提供平均磁場

* 22

H ,則 CFO 中的

3 q 31

q 32

q 33

項 會參與耦合的行為,BFO 材料中的

e 31

e 32

e 33

會因應CFO 的耦合行為產生平

CFO /BFO

[ ]

001之耦合情形,當對其提供平均磁場

H 1

時,CFO 中的

q 15

項會參與耦合的行為,而BFO 材料中的

e 15

項因應CFO 的耦合行為產生電場 E ,

1

因此可以得到複合材料的λ ;如果提供平均磁場

* 11

H ,則 CFO 中的

2

q 項會參

24

與耦合的行為,而BFO 中的e 會因應 CFO 的耦合行為產生均電場

24

E ,因此

2

會得到複合材料的λ ;如果提供平均磁場

* 22

H ,則 CFO 中的

3 q 31

q 32

q 33

項 會參與耦合的行為,BFO 材料中的

e 31

e 32

e 33

會因應CFO 的耦合行為產生平

相關文件