• 沒有找到結果。

本研究之目的為使用Mori-Tanaka 微觀力學模型模擬內含物與母材於不同極化方 向之雙相壓電壓磁顆粒複合材料之等效材料性質,尋找出最佳磁電電壓係數之極化方 向配置,並使用COMSOL Multiphysics 有限元素分析軟體驗證微觀力學理論之正確性。

本章將闡述研究結果及相關討論與未來展望。

5-1 結論

1. 驗證單位立方晶格與 Mori-Tanaka 模式之差異性

微觀力學模型Mori-Tanaka 模式無法模擬內含物之排列,在此選用鈮酸鋰 LiNbO3 (3m 對稱性)、鈦酸鋇 BaTiO3 (6mm 對稱性)作為壓電材料並置入鈷鐵氧 CoFeO4 (6mm 對稱性),利用 COMSOL Multiphysics 有限元素法分析軟體模擬簡 單立方(SC)、體心立方(BCC)與面心立方(FCC)之雙相顆粒複合材料。結果顯示 Mori-Tanaka 模式最適合模擬鈮酸鋰 LiNbO3置入鈷鐵氧CoFeO4之BCC 與 FCC 晶 格結構、鈦酸鋇 BaTiO3置入鈷鐵氧CoFeO4則為FCC 晶格結構。

2. 圓球顆粒內含物之對稱性

圓球顆粒內含物不具有方向性,只要包含圓心之平面皆為顆粒之對稱面,複 合材料極化方向[100]/[100]如同將[001]/[001]對全域座標之 x2旋轉 90°。由第三章 之結果觀察到[001]/[001]之 αE,11* 為[100]/[100]之 αE,33* ;由第四章結果顯示最佳化之 αE,11*αE,22*αE,33* 數值完全相同。

111

3. 磁電耦合效應於最佳化前後之比較

LNO[001]/CFO[001]之 αE,11* = -8.0548 V/cmOe,經過旋轉極化方向後提升至 -9.5948 V/cmOe,增加了 1.19 倍;CFO[001]/LNO[001]之 αE,11* = ‐2.1023 V/cmOe,

經過最佳化後提升至-2.6711 V/cmOe,增加了 1.27 倍。

BTO/CFO 與 CFO/BTO 經過旋轉壓電材料之極化方向與壓磁材料之磁軸後,

無法提升磁電電壓係數,兩複合材料於[001]/[001]之極化方向即呈現最佳之磁電 電壓係數。

4. 磁電電壓係數與壓電材料壓電係數之關係

LNO/CFO 與 CFO/LNO 可以藉由旋轉極化方向得到最佳磁電電壓係數,以最 佳磁電電壓係數 αE,11* 而言,兩複合材料之CFO 極化方向維持[001],LNO 之極化 方向則很有趣地與其壓電係數 e15最佳之極化方向相當接近。LNO 壓電係數 e15與 兩複合材料 αE,11* 在改變LNO 極化方向會出現相同的趨勢,因此可以藉由最佳壓 電係數 e15之極化方向當作參考,尋找出最佳磁電電壓係數對應之極化方向。

112

5-2 未來展望

1. 使用非對稱性較高之材料

本次研究之壓電材料LNO 為 3m 對稱結構,旋轉極化方向提升壓電係數 e15相 當有限,而BTO 為 6m 對稱結構,完全不能藉由旋轉極化方向提升壓電係數 e15, 因此壓電材料選擇非對稱性較高之材料,在旋轉極化方向下有可能大幅地增加壓電 係數 e15,進而提升 αE,11*

2. 不同形狀內含物對磁電耦合效應之影響

複合材料之內含物不僅限於圓球顆粒,還有層狀與橢球狀顆粒之內含物,其中 橢球內含物於母材中可以旋轉其長軸方向,也可以改變內含物之極化方向,這兩種 組合皆可以影響磁電耦合效應,因此相當值得探討。

3. 非完美交界面對磁電耦合效應之影響

本研究採用完美交界面之假設,而實際上製作出來之複合材料,母材與內含 物之間存在非完美交界面,造成應變、位移、電勢能與磁勢能不連續之現象,進 而影響磁電耦合效應,因此對非完美介面之探討可以讓理論越接近實際材料之現 象。

113

參考文獻

[1] 楊大智, 智能材料與智能系統. 新北市中和區: 新文京開發, 2004.

[2] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, "Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions,"

Journal of Applied Physics, vol. 103, pp. 031101-35, 2008.

[3] S. X. Dong, J. Y. Zhai, J. F. Li, and D. Viehland, "Enhanced Magnetoelectric Effect in Three-Phase MnZnFe2O4/Tb1-xDyXFe2-y/ Pb(Zr,Ti)O3 composites," Journal of Applied Physics, vol. 100, pp. 124108, 2006.

[4] J. Silva, A. Reyes, H. Esparza, H. Camacho, and L. Fuentes, "BiFeO3: A Review on Synthesis, Doping and Crystal Structure," Integrated Ferroelectrics, vol. 126, pp.

47-59, 2011.

[5] T. Wu, A. Bur, K. Wong, P. Zhao, C. S. Lynch, P. K. Amiri, K. L. Wang, and G. P.

Carman, "Electrical Control of Reversible and Permanent Magnetization

Reorientation for Magnetoelectric Memory Devices," Applied Physics Letters, vol.

98, pp, 262504 2011.

[6] N. D'Souza, J. Atulasimha, and S. Bandyopadhyay, "Four-State Nanomagnetic Logic Using Multiferroics," Journal of Physics D-Applied Physics, vol. 44, pp.

265001, 2011.

[7] Z. Shi, C. P. Wang, X. J. Liu, and C. W. Nan, "A Four-State Memory Cell Based on Magnetoelectric Composite," Chinese Science Bulletin, vol. 53, pp. 2135-2138, 2008.

[8] A. Bayrashev, W. P. Robbins, and B. Ziaie, "Low Frequency Wireless Powering of Microsystems Using Piezoelectric-Magnetostrictive Laminate Composites," Sensors and Actuators a-Physical, vol. 114, pp. 244-249, 2004.

[9] 齊孝定, "多鐵性(Multiferroic)材料的發展與潛在應用," 物理雙月刊, vol. 31, pp.

461-467, 2009.

[10] W. Eerenstein, N. D. Mathur, and J. F. Scott, "Multiferroic and Magnetoelectric Materials," Nature, vol. 442, pp. 759-765, 2006.

[11] 楊展其, 梁振偉, and 朱英豪, "多鐵材料物理鉍鐵氧之磁電耦合與應用," 物理 雙月刊, vol. 31, pp. 468-475, 2009.

[12] G. Srinivasan, "Magnetoelectric Composites," Annual Review of Materials Research, vol. 40, pp. 153-178, 2010.

[13] N. A. Spaldin and M. Fiebig, "The Renaissance of Magnetoelectric Multiferroics.,"

Science, vol. 309, pp. 391-392, 2005.

[14] M. F. Ashby, H. Shercliff, and D. Cebon, Materials: Engineering, Science, Processing and Design. University of Cambridge: Elsevier Ltd., 2007.

114

[15] E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynamics of Continuous Media. Oxford: Butterworth-Heinemann, 1984.

[16] D. N. Astrov, "The Magnetoelectrics Effect in Antiferromagnetoelectrics," Soviet Physics - JETP, vol. 11, pp. 708-709, 1960.

[17] G. T. Rado and V. J. Folen, "Observation of the Magnetically Induced

Magnetoelectric Effect and Evidence for Antiferromagnetic Domains," Physical Review Letters, vol. 7, pp. 310-311, 1961.

[18] N. A. Hill, "Why Are There So Few Magnetic Ferroelectrics?," Journal of Physical Chemistry B, vol. 104, pp. 6694-6709, 2000.

[19] J. v. Suchtelen, "A New Application of Composite Materials," Philips Res. Repts, pp.

28-37, 1972.

[20] C.-W. Nan, "Magnetoelectric Effect in Composites of Piezoelectric and Piezomagnetic Phases," Physical Review B, vol. 50, pp. 6082-6088, 1994.

[21] J. Y. Li and M. L. Dunn, "Micromechanics of Magnetoelectroelastic Composite Materials; Average Fields and Effective Behavior," Journal Intelligent Material System and Structures, vol. 9, pp. 404-416, 1998.

[22] S. X. Dong, J. F. Li, and D. Viehland, "Longitudinal and Transverse

Magnetoelectric Voltage Coefficients of Magnetostrictive/Piezoelectric Laminate Composite: Theory," Ieee Transactions on Ultrasonics Ferroelectrics and

Frequency Control, vol. 50, pp. 1253-1261, 2003.

[23] S. X. Dong, J. F. Li, and D. Viehland, "Longitudinal and Transverse

Magnetoelectric Voltage Coefficients of Magnetostrictive/Piezoelectric Laminate Composite: Experiments," Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 51, pp. 794-799, 2004.

[24] H. Y. Kuo and T. S. Wu, "Magnetoelectric Effect of Three-Phase Core-Shell-Matrix Particulate Multiferroic Composites," Journal of Applied Physics, vol. 111, pp.

054915, 2012.

[25] 彭晟祐, "三相壓電壓磁纖維複合材料之磁電耦合效應," 土木工程學系, 國立交 通大學, 新竹市, 2012.

[26] J. Echigoya, S. Hayashi, and Y. Obi, "Directional Solidification and Interface Structure of BaTiO3-CoFeO4 Eutectic," Journal of Materials Science, vol. 35, pp.

5587-5591, 2000.

[27] S. Q. Ren, L. Q. Weng, S. H. Song, F. Li, J. G. Wan, and M. Zeng,

"BaTiO3/CoFeO4 Particulate Composites with Large High Frequency

Magnetoelectric Response," Journal of Materials Science, vol. 40, pp. 4375-4378, 2005.

[28] C. A. F. Vaz, J. Hoffman, C. H. Anh, and R. Ramesh, "Magnetoelectric Coupling Effects in Multiferroic Complex Oxide Composite Structures," Advanced Materials,

115

vol. 22, pp. 2900-2918, 2010.

[29] J. Ryu, S. Priya, A. Vazquez, and K. Uchino, "Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenol-D Laminate Composites," Journal of the American Ceramic Society, vol. 84, pp. 2905-2908, 2001.

[30] R. Zeng, K. W. Kwok, H. L. W. Chan, and C. L. Choy, "Longitudinal and Transverse Piezoelectric Coefficients of Lead Zirconate Titanate/Vinylidene

Fluoride-Trifluoroethylene Composites with Different Polarization States," Journal of Applied Physics, vol. 92, pp. 2674-2679, 2002.

[31] J. F. Li, J. L. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A. P. Pyatakov, A.

K. Zvezdin, and D. Viehland, "Dramatically Enhanced Polarization in (001), (101), and (111) BiFeO3 Thin Films Due to Epitiaxial-Induced Transitions," Applied Physics Letters, vol. 84, pp. 5261-5263, 2004.

[32] Z. Shi, C. W. Nan, J. M. Liu, D. A. Filippov, and M. I. Bichurin, "Influence of Mechanical Boundary Conditions and Microstructural Features on Magnetoelectric Behavior in a Three-Phase Multiferroic Particulate Composite," Physical Review B, vol. 70, pp. 134417. 2004.

[33] P. Yang, K. Zhao, Y. Yin, J. G. Wan, and J. S. Zhu, "Enhanced Magnetoelectric Effect with Wide Frequency Peak and Many Optimized bias Magnetic Field in Terfenol-D/LiNbO3 Composite," Integrated Ferroelectrics, vol. 87, pp. 50-56, 2007.

[34] Y. J. Wang, S. W. Or, H. L. W. Chan, X. Y. Zhao, and H. S. Luo, "Enhanced Magnetoelectric Effect in Longitudinal-Transverse Mode

Terfenol-D/ Pb(Mg1/3Nb2/3)O3-PbTiO3 Laminate Composites with Optimal Crystal Cut," Journal of Applied Physics, vol. 103, pp. 124511, 2008.

[35] H. Y. Kuo, A. Slinger, and K. Bhattacharya, "Optimization of Magnetoelectricity in Piezoelectric-Magnetostrictive Bilayers," Smart Materials & Structures, vol. 19, pp.

125010, 2010.

[36] C. W. Nan, M. Li, and J. H. Huang, "Calculations of Giant Magnetoelectric Effects in Ferroic Composites of Rare-Earth-Iron Alloys and Ferroelectric Polymers,"

Physical Review B, vol. 63, pp. 144415, 2001.

[37] J. Y. Kim, "Micromechanical Analysis of Effective Properties of

Magneto-Electro-Thermo-Elastic Multilayer Composites," International Journal of Engineering Science, vol. 49, pp. 1001-1018, 2011.

[38] H.-Y. Kuo and Y.-L. Wang, "Optimization of Magnetoelectricity in Multiferroic Fibrous Composites," Mechanics of Materials, pp. 88-99, 2012.

[39] "IEEE Standard on Piezoelectricity," ANSI/IEEE Std 176-1987, 1987.

[40] "IEEE Standard on Magnetostrictive Materials: Piezomagnetic Nomenclature,"

IEEE Std 319-1990, 1990.

116

[41] J. H. Huang and W.-S. Kuo, "The Analysis of Piezoelectric/Piezomagnetic

Composite Materials Containing Ellipsoidal Inclusions," Journal of Applied Physics, vol. 81, pp. 1378-1386, 1997.

[42] J. Qu and M. Cherkaoui, Fundamental of Micromechanics of Solid. New Jersey:

Wiley, 2006.

[43] R. S. Weis and T. K. Gaylord, "Lithium-Niobate - Summary of Physical-Properties and Crystal-Structure," Applied Physics a-Materials Science & Processing, vol. 37, pp. 191-203, 1985.

[44] E. Pan, "Exact Solution for Simply Supported and Multilayered

Magneto-Electro-Elastic Plates," Journal of Applied Mechanics, vol. 68, pp.

608-618, 2001.

[45] T. Mori and K. Tanaka, "Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions," Acta Metallurgica, vol. 21, pp. 571-574, 1973.

[46] R. Hill, "Theory of Mechanical Properties of Fibre-Strengthened Materials--III.

Self-Consistent Model," Journal of the Mechanics and Physics of Solids, vol. 13, pp.

189-198, 1965.

[47] S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials, 2nd ed.: Elsevier Science, 1999.

[48] J. D. Eshelby, "The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems," Proceedings of the Royal Society of London. Series A.

Mathematical and Physical Sciences, vol. 241, pp. 376-396, 1957.

[49] J. Y. Li and M. L. Dunn, "Anisotropic Coupled-Field Inclusion and Inhomogeneity Problems," Philosophical Magazine A, vol. 77, pp. pp.1341-1350, 1998.

[50] J. Qu and M. Cherkaoui, Fundamentals of Micromechanics of Solids: Wiley, 2006.

[51] J. Y. Li, "Magnetoelectroelastic Multi-Inclusion and Inhomogeneity Problems and Their Applications in Composite Materials," International Journal of Engineering Science, vol. 38, pp. 1993-2011, 2000.

[52] G. B. Arfken, H. J. Weber, and F. Harris, Mathematical Methods for Physicists:

Academic Press, 2000.

[53] C. Group, "COMSOL Multiphysics," November 2008 COMSOL 3.5a ed, 2008.

[54] Y. Liu, X. F. Ruan, B. P. Zhu, S. Chen, Z. H. Lu, J. Shi, and R. Xiong,

"CoFeO4/BaTiO3 Composites via Spark Plasma Sintering with Enhanced Magnetoelectric Coupling and Excellent Anisotropy," Journal of the American Ceramic Society, vol. 94, pp. 1695-1697, 2011.

[55] C. W. Nan and F. S. Jin, "Multiple-Scattering Approach to Effective Properties of Piezoelectric Composites," Physical Review B, vol. 48, pp. 8578-8582, 1993.

[56] C. W. Nan, "Physics of Inhomogeneous Inorganic Materials," Progress in Materials Science, vol. 37, pp. 1-116, 1993.

117

[57] C. W. Nan, "Magnetoelectric Effect in Composites of Piezoelectric and Piezomagnetic Phases," Physical Review B, vol. 50, pp. 6082-6088, 1994.

[58] C. W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, Y. H. Lin, L. J. Dong, and C. X. Xiong,

"A Three-Phase Magnetoelectric Composite of Piezoelectric Ceramics, Rare-Earth Iron Alloys, and Polymer," Applied Physics Letters, vol. 81, pp. 3831-3833, 2002.

118

附錄 A BaTiO

3

置入CoFeO

4

之壓電壓磁複合材料

本附錄所使用之材料為鈦酸鋇(BaTiO3,BTO)與鈷鐵氧(CoFeO4,CFO),BTO 為現在 廣為使用之材料,其與CFO 相同具有 6mm 之晶格對稱結構,且同為陶瓷材料。壓電 材料BTO 與 LNO 之結構對稱性不同,所以研究結果可以與第三張及第四章相互比較。

由材料對稱性可知材料配置[001]/[001]與[001]/[100]之等效材料性質對全域座標 x2順 時針旋轉90°即分別轉為[100]/[100]與[100]/[001]之等效材料性質,因此本章僅討論四 種配置形式(表 A-1)。BTO[001]與 BTO[100]之材料性質 L 如表 A-2,CFO[001]與 CFO[100]之材料性質 L 如表 3-2。

表A-1 BTO-CFO 複合材料配置形式

案例 內含物 極化方向 母材 極化方向

Ⅰ LNO [001]

CFO [001]

Ⅱ [001] [100]

Ⅲ CFO [001]

LNO [001]

Ⅳ [001] [100]

A-2 BTO 於[001]與[100]之材料性質 L (a) BTO[001]之材料性質 L

1.66E+11 7.7E+10 7.8E+10 0 0 0 0 0 -4.4 0 0 0

7.7E+10 1.66E+11 7.8E+10 0 0 0 0 0 -4.4 0 0 0

7.8E+10 7.8E+10 1.62E+11 0 0 0 0 0 18.6 0 0 0

0 0 0 4.3E+10 0 0 0 11.6 0 0 0 0

0 0 0 0 4.3E+10 0 11.6 0 0 0 0 0

0 0 0 0 0 4.45E+10 0 0 0 0 0 0

0 0 0 0 11.6 0 1.12E-08 0 0 0 0 0

0 0 0 11.6 0 0 0 1.12E-08 0 0 0 0

-4.4 -4.4 18.6 0 0 0 0 0 1.26E-08 0 0 0

0 0 0 0 0 0 0 0 0 5.00E-06 0 0

0 0 0 0 0 0 0 0 0 0 5.00E-06 0

0 0 0 0 0 0 0 0 0 0 0 1.00E-05

(b) BTO[100]之材料性質 L

1.62E+11 7.8E+10 7.8E+10 0 0 0 18.6 0 0 0 0 0

7.8E+10 1.66E+11 7.7E+10 0 0 0 -4.4 0 0 0 0 0

7.8E+10 7.7E+10 1.66E+11 0 0 0 -4.4 0 0 0 0 0

0 0 0 4.45E+10 0 0 0 0 0 0 0 0

0 0 0 0 4.3E+10 0 0 0 11.6 0 0 0

0 0 0 0 0 4.3E+10 0 11.6 0 0 0 0

18.6 -4.4 -4.4 0 0 0 1.26E-08 0 0 0 0 0

0 0 0 0 0 11.6 0 1.12E-08 0 0 0 0

0 0 0 0 11.6 0 0 0 1.12E-08 0 0 0

0 0 0 0 0 0 0 0 0 1.00E-05 0 0

0 0 0 0 0 0 0 0 0 0 5.00E-06 0

0 0 0 0 0 0 0 0 0 0 0 5.00E-06

119

A-1 BTO[001]置入 CFO[001]

此模型運用Mori-Tanaka 模式與有限元素法探討 BTO[001]/CFO[001]形式之壓電 壓磁複合材料行為,其中BTO[001]與 CFO[001]之性質為原始之性質,材料性質如表 A-2a 與表 3-2b。

使用Mori-Tanaka 模式可以模擬無內含物存在到母材完全被內含物佔據之狀況。

因此,設定體積比為0 時,複合材料之等效材料性質為 CFO[001]之性質;體積比為 1 時,複合材料之性質為BTO[001]之性質,由此狀況來判斷 Mori-Tanaka 模式與程式碼 為可靠的。

由觀察得知(圖 A-1),Mori-Tanaka 模式與有限元素之數據於非耦合的等效係數都 相當吻合,驗證Mori-Tanaka 模式之可靠性。等效壓電係數 e*與等效介電常數 κ*於體 積比0.9 之前呈現單調遞增且相當緩慢,體積比 0.9 後,其數據忽然快速增加轉向 BTO 之性質;等效彈性係數 C*、等效壓磁係數 q*與等效磁導率 μ*皆隨體積比增加呈現單 調遞增或遞減之現象。

等效磁電係數 λij*之數據隨體積比呈現類似拋物線的路徑(圖 A-1f),在體積比 0.8 前和緩地成長,體積比0.8 後迅速地歸零。比較 Mori-Tanaka 模式與有限元素法之數 據,在體積比0.3 之前兩數據相當吻合,而體積比 0.3 之後誤差增加,不過變化之趨勢 一致。此外, λ11* 於體積比0.85 有最佳值3.7641×10-10 Ns/VC;λ33* 於體積比0.85 有最

佳值1.4652×10-10 Ns/VC。以上複合後之等效材料性質,因兩材料皆屬於 6mm 對稱性,

所以複合後也符合6mm 對稱性。

最重要之磁電電壓係數αE,ij* 中(圖 A-2),其數據隨體積比呈現類似拋物線之路徑,

比較Mori-Tanaka 模式與有限元素分析,其狀況與等效磁電係數 λ*相同,兩數據在體 積比0.3 之後誤差開始增加,不過變化之趨勢一致。此外, E,11* 於體積比0.31 時有最 佳值-1.2652 V/cmOe; E,33* 於體積比0.33 有最佳值-0.4294 V/cmOe。

120

Volume Fraction of Inclusion C* (N/m2 )

Volume Fraction of Inclusion

e* (C/m2)

Volume Fraction of Inclusion

* (N/V2 )

Volume Fraction of Inclusion

q* (N/Am)

Volume Fraction of Inclusion

* (Ns2 /C2 )

Volume Fraction of Inclusion

* (Ns/VC)

M-T FEM

121

A-2 磁電電壓係數αE*與體積比f 之關係

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1.4

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

*E,11

*E,22

*E,33

BTO[001]/CFO[001]

Volume Fraction of Inclusion

* E (V/cmOe)

M-T FEM

122

A-2 BTO[001]置入 CFO[100]

本節討論內含物為BTO,其極化方向為[001],母材為 CFO,其極化方向為[100]

之複合材料,在此使用尤拉角將CFO 之材料性質對局域座標之 x2'軸順時針旋轉90°, 材料性質如表A-2a 與表 3-2d。

使用Mori-Tanaka 模式模擬複合材料中,在體積比為 0 時,得到等效材料性質為 CFO[100]之材料性質;在體積比為 1 時,得到等效材料性質為 BTO[001]之材料性質,

藉此可以判定Mori-Tanaka 模式與程式碼之準確性。

由觀察得知(圖 A-3),Mori-Tanaka 模式與有限元素分析於非耦合項之數據皆相當 吻合。等效壓電係數與等效介電常數於體積比0.9 之前成長相當緩慢,體積比 0.9 後曲 率相當大地轉向BTO 之性質,等效彈性係數、等效壓磁係數與等較果磁導率皆隨體積 比呈現單調遞增或遞減。由於CFO 極化方向的改變,使得等效介電常數 κ11*κ22*κ33*

由觀察得知(圖 A-3),Mori-Tanaka 模式與有限元素分析於非耦合項之數據皆相當 吻合。等效壓電係數與等效介電常數於體積比0.9 之前成長相當緩慢,體積比 0.9 後曲 率相當大地轉向BTO 之性質,等效彈性係數、等效壓磁係數與等較果磁導率皆隨體積 比呈現單調遞增或遞減。由於CFO 極化方向的改變,使得等效介電常數 κ11*κ22*κ33*

相關文件