• 沒有找到結果。

生性 BMPRII homolog 突變果蠅之運動神經元中則可使果蠅生存,並且部分恢復 NMJ 中突觸 (synapse) 的型態及功能(Marques et al., 2002),另外,在哺乳類 動物的研究中發現當神經受到損傷時,運動神經元中的 BMP2 mRNA 表現量會 增加(Wang et al., 2007b)。

過去曾有多篇研究利用 nerve ligation 實驗方法,觀察內生性蛋白質在軸突 內的運輸情形,用以證明其蛋白質對神經元而言是否具有生理功能。在過去研究 中來自許旺細胞及肌肉的 Glial cell line-derived neurotrophic factor (GDNF)已被 證實為運動神經元的 neurotrophic factor 之一,而在 nerve ligation 實驗發現其 會堆積在打結點近端處位置,顯示其在神經軸突內有順向運輸的現象(Russell et al., 2000),亦有研究利用 nerve ligation 實驗方法觀察到 BMP6 會堆積在打結點 遠端處的位置,顯示其在軸突內有逆向運輸的情形,且由許旺細胞產生的 BMP6 亦被證實能夠促進運動神經元的存活(Wang et al., 2007a)。另外,在 TGF-beta 2 的研究上發現,許旺細胞以及肌肉皆會表現 TGF-beta 2,而在 nerve ligation 實 驗中觀察到 TGF-beta 2 在打結處的兩端皆有堆積的現象,顯示其在運動神經元

之軸突內具有雙向運輸的特性(Jiang et al., 2000b),亦有研究指出在神經撕裂傷 的老鼠身上每天給予 TGF-beta 2 處理,4 週後觀察發現 TGF-beta 2 能夠降低運 動神經元死亡的數目(Jiang et al., 2000a)。而本論文中觀察到 BMP4 會堆積在打 結處的兩端,其運輸方向有順向運輸及逆向運輸(圖八),其運輸方向與先前研究 發現的 TGF-beta 2 一致(Jiang et al., 2000b),由這些結果顯示,BMP4 或許與 TGF-beta 2 具有相似生理功能。綜合上述,我們認為周邊肌肉組織及許旺細胞 可能藉由多種因子影響運動神經元各種不同的生理功能。

Muscle-derived factor 對於運動神經元的發育及至成熟穩定非常的重要,曾 有研究發現肌肉發育缺失的老鼠,其 90%的運動神經元會死亡(Oppenheim et al., 1993),亦有文獻指出在大鼠的肌肉中移植進過度表現 neurotrophin-4 (NT-4) 的 細胞後,會大量增加運動神經末梢的分支 (branching)數目,顯示由肌肉所分泌

生 (axon regeneration) (Parikh et al., 2011),且在中樞神經系統損傷後發生去 髓鞘化 (demyelination) 過程中,短時間內給予外源性 (exogenous) BMP4 處 理可以在促進寡突膠前驅細胞 (oligodendrocyte progenitor cells , OPCs)、星狀 膠神經細胞 (astrocyte)以及為神經膠細胞 (microglial) 增生(Sabo et al., 2011), 態下,BMPRII protein 會表現在神經軸突內(圖一),BMP4 的 protein 則集中表 現在坐骨神經之許旺細胞上(圖七),且坐骨神經上能夠偵測到 BMP4 mRNA 表 1990),然而在神經損傷後的坐骨神經上觀察到內生性 CNTF mRNA 表現量下降,

而由本論文的 nerve ligation 實驗,我們觀察到坐骨神經之 BMP4 mRNA 表現量 有下降的情形(圖九),另外,由免疫染色實驗我們觀察到 nerve ligation 後的坐 骨神經上 BMP4 則集中在神經軸突內(圖八)。根據上述內容,我們可以知道許旺 細胞在正常的狀態下會產生 BMP4,故 BMP4 是一種 Schwann cell-derived factor,用以維持神經肌肉系統之環境的穩定,而當神經軸突受到損傷時,許旺 細胞所產生的 BMP4 將會被運送進軸突內,參與許旺細胞及運動神經元之間的 機制作用。

過去有研究指出,BMP4 與 CNTF 皆可保護視網膜神經細胞抵抗 NMDA 所

由本論文之實驗發現,BMP4 可以保護 NG108-15 神經細胞對抗由 glutamate 引 起的毒殺反應。過去曾有研究發現,在卵巢組織培養系統中,加入 BMP4 中和 性抗體抑制掉卵巢內部 BMP4 訊息傳遞路徑,將會促進細胞凋亡反應,然而以 BMP4 處理卵巢組織後則可觀察到其 transforming growth factor-alpha (TGF) mRNA 表現量下降,顯示 BMP4 為卵巢細胞的 survival factor,其可以透過調控 growth factor 而維持組織細胞的穩定(Nilsson and Skinner, 2003),故 BMP4 也 許可以藉由調控 NG108-15 神經細胞內部 growth factor 的表現而達到神經保護 之效果。另外,曾有文獻指出 glutamate 誘導的興奮性毒殺作用會透過活化 MEK / ERK 訊息路徑促使細胞膜上 AMPA receptor 大量增加,細胞內環境更為興奮 性後引起細胞死亡 (Zhu et al., 2002),而過去的研究發現 BMP4 在胚胎幹細胞 (embryonic stem cells, ES cells) 內會藉由抑制 ERK/p38 MAPK 訊息路徑達到 細胞自我更新 (self-renewal),且 p38 MAPK 的抑制劑之功能與處理 BMP4 的 效果相同(Qi et al., 2004),另外,在大腦缺血性損傷 (cerebral ischemia) 的動 物模型中則發現 p38 MAPK 的抑制劑會降低 glutamate 誘導之細胞死亡反應 (Barone et al., 2001),所以,BMP4 也許會透過抑制 glutamate 所活化的訊息路 徑以達到保護神經細胞的功能。因此,我們未來可進一步確認 BMP4 保護

‧ 國

立 政 治 大 學

Na tiona

l Ch engchi University

50

第五章 結論

在本篇論文中以各種不同技術初步證實 BMP4 於神經肌肉系統中具有生理 功能,在正常狀態下,許旺細胞與肌肉皆會產生 BMP4,而由肌肉產生的 BMP4 亦會表現在 NMJ 處,且其 mRNA 及 protein 之表現量皆會受到神經衍生性蛋 白 Agrin 的調控。另外,由 nerve ligation 實驗中發現 BMP4 在神經軸突內有雙 向運輸的現象,當神經受損時,周邊的肌肉組織及神經軸突上的許旺細胞之 BMP4 mRNA 表現量皆受到影響。

此外,我們亦觀察到 BMP4 能夠保護 NG108-15 神經細胞對抗 Glutamate 誘導的興奮性毒殺作用,且在興奮性毒殺時期以及恢復時期皆以 BMP4 處理對 神經細胞的保護效果最好。由本論文之實驗結果推論:BMP4 是運動神經元的 peripheral-derived factor 之一,在神經肌肉系統中具有生理功能,而當神經受 損時,其可能會參與調控運動神經元的存活,故 BMP4 未來也許可以應用在臨 床醫療上,發展成治療運動神經元疾病的方法。

Aberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhaes TR, Goodman CS (2002) wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33:545-558.

An MC, Lin W, Yang J, Dominguez B, Padgett D, Sugiura Y, Aryal P, Gould TW, Oppenheim RW, Hester ME, Kaspar BK, Ko CP, Lee KF (2010) Acetylcholine negatively regulates development of the neuromuscular junction through distinct cellular mechanisms. Proceedings of the National Academy of Sciences of the United States of America 107:10702-10707.

Arkell R, Beddington RS (1997) BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124:1-12.

Ball RW, Warren-Paquin M, Tsurudome K, Liao EH, Elazzouzi F, Cavanagh C, An BS, Wang TT, White JH, Haghighi AP (2010) Retrograde BMP signaling controls synaptic growth at the NMJ by regulating trio expression in motor neurons. Neuron 66:536-549.

Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, Badger AM, White RF, McVey MJ, Legos JJ, Erhardt JA, Nelson AH, Ohlstein EH, Hunter AJ, Ward K, Smith BR, Adams JL, Parsons AA (2001) SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia.

The Journal of pharmacology and experimental therapeutics 296:312-321.

Bensimon G, Lacomblez L, Meininger V (1994) A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. The New England journal of medicine 330:585-591.

Beppu H, Minowa O, Miyazono K, Kawabata M (1997) cDNA cloning and genomic organization of the mouse BMP type II receptor. Biochemical and biophysical research communications 235:499-504.

Borges LS, Yechikhov S, Lee YI, Rudell JB, Friese MB, Burden SJ, Ferns MJ (2008) Identification of a motif in the acetylcholine receptor beta subunit whose phosphorylation regulates rapsyn association and postsynaptic receptor localization. The Journal of neuroscience : the official journal of the Society for Neuroscience 28:11468-11476.

Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cellular signalling 23:609-620.

Brandon EP, Lin W, D'Amour KA, Pizzo DP, Dominguez B, Sugiura Y, Thode S,

neuromuscular synapses in choline acetyltransferase-deficient mice.

The Journal of neuroscience : the official journal of the Society for Neuroscience 23:539-549.

Caroscio JT, Mulvihill MN, Sterling R, Abrams B (1987) Amyotrophic lateral sclerosis. Its natural history. Neurologic clinics 5:1-8.

Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389:85-89.

Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383:407-413.

Choi DW (1987) Ionic dependence of glutamate neurotoxicity. The Journal of neuroscience : the official journal of the Society for Neuroscience 7:369-379.

Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM (1996) Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87:661-673.

Feng Z, Ko CP (2008) Schwann cells promote synaptogenesis at the neuromuscular junction via transforming growth factor-beta1. The Journal of neuroscience : the official journal of the Society for Neuroscience 28:9599-9609.

Ferayorni AJ, Gunville CF, Grow WA (2004) Nicotine decreases agrin signaling and acetylcholine receptor clustering in C2C12 myotube culture.

Journal of neurobiology 60:51-60.

Fischer AJ, Schmidt M, Omar G, Reh TA (2004) BMP4 and CNTF are neuroprotective and suppress damage-induced proliferation of Muller glia in the retina. Molecular and cellular neurosciences 27:531-542.

Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG, Shannon M, He W, Das S, Massague J, Bernard O (2003) Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. The Journal of cell biology 162:1089-1098.

Friedman B, Scherer SS, Rudge JS, Helgren M, Morrisey D, McClain J, Wang DY, Wiegand SJ, Furth ME, Lindsay RM, et al. (1992) Regulation of ciliary neurotrophic factor expression in myelin-related Schwann cells in vivo. Neuron 9:295-305.

Fuller ML, DeChant AK, Rothstein B, Caprariello A, Wang R, Hall AK, Miller RH (2007) Bone morphogenetic proteins promote gliosis in demyelinating

spinal cord lesions. Annals of neurology 62:288-300.

Funakoshi H, Belluardo N, Arenas E, Yamamoto Y, Casabona A, Persson H, Ibanez CF (1995) Muscle-derived neurotrophin-4 as an activity-dependent trophic signal for adult motor neurons. Science 268:1495-1499.

Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85:525-535.

Gesemann M, Denzer AJ, Ruegg MA (1995) Acetylcholine receptor-aggregating activity of agrin isoforms and mapping of the active site. The Journal of cell biology 128:625-636.

Glass DJ, DeChiara TM, Stitt TN, DiStefano PS, Valenzuela DM, Yancopoulos GD (1996a) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation and is a functional receptor for agrin.

Cold Spring Harbor symposia on quantitative biology 61:435-444.

Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, DiStefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD (1996b) Agrin acts via a MuSK receptor complex. Cell 85:513-523.

Gould TW, Enomoto H (2009) Neurotrophic modulation of motor neuron development. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry 15:105-116.

Guha U, Gomes WA, Samanta J, Gupta M, Rice FL, Kessler JA (2004) Target-derived BMP signaling limits sensory neuron number and the extent of peripheral innervation in vivo. Development 131:1175-1186.

Hamburger V (1958) Regression versus peripheral control of differentiation in motor hypoplasia. The American journal of anatomy 102:365-409.

Heath PR, Shaw PJ (2002) Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis.

Muscle & nerve 26:438-458.

Ishii DN (1989) Relationship of insulin-like growth factor II gene expression in muscle to synaptogenesis. Proceedings of the National Academy of Sciences of the United States of America 86:2898-2902.

Jennings CG, Dyer SM, Burden SJ (1993) Muscle-specific trk-related receptor with a kringle domain defines a distinct class of receptor tyrosine kinases. Proceedings of the National Academy of Sciences of the United States of America 90:2895-2899.

Jessell TM (2000) Neuronal specification in the spinal cord: inductive signals

and transcriptional codes. Nature reviews Genetics 1:20-29.

Jiang Y, Zhang M, Koishi K, McLennan IS (2000a) TGF-beta 2 attenuates the injury-induced death of mature motoneurons. Journal of neuroscience research 62:809-813.

Jiang Y, McLennan IS, Koishi K, Hendry IA (2000b) Transforming growth factor-beta 2 is anterogradely and retrogradely transported in motoneurons and up-regulated after nerve injury. Neuroscience 97:735-742.

Kawabata M, Imamura T, Miyazono K (1998) Signal transduction by bone morphogenetic proteins. Cytokine & growth factor reviews 9:49-61.

Kilpatrick TJ, Soilu-Hanninen M (1999) Molecular mechanisms regulating motor neuron development and degeneration. Molecular neurobiology 19:205-228.

Kim N, Burden SJ (2008) MuSK controls where motor axons grow and form synapses. Nature neuroscience 11:19-27.

Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ (2008) Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell 135:334-342.

Kretzschmar M, Massague J (1998) SMADs: mediators and regulators of TGF-beta signaling. Current opinion in genetics & development 8:103-111.

Laake JH, Slyngstad TA, Haug FM, Ottersen OP (1995) Glutamine from glial cells is essential for the maintenance of the nerve terminal pool of glutamate: immunogold evidence from hippocampal slice cultures.

Journal of neurochemistry 65:871-881.

Labeur M, Paez-Pereda M, Haedo M, Arzt E, Stalla GK (2010) Pituitary tumors:

cell type-specific roles for BMP-4. Molecular and cellular endocrinology 326:85-88.

Lanser ME, Fallon JF (1987) Development of the brachial lateral motor column in the wingless mutant chick embryo: motoneuron survival under varying degrees of peripheral load. The Journal of comparative neurology 261:423-434.

Liem KF, Jr., Tremml G, Jessell TM (1997) A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91:127-138.

Liem KF, Jr., Jessell TM, Briscoe J (2000) Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 127:4855-4866.

Liem KF, Jr., Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969-979.

Lin W, Dominguez B, Yang J, Aryal P, Brandon EP, Gage FH, Lee KF (2005) Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46:569-579.

Ling KK, Siow NL, Choi RC, Tsim KW (2005) ATP potentiates the formation of AChR aggregate in the co-culture of NG108-15 cells with C2C12 myotubes. FEBS letters 579:2469-2474.

Macpherson PC, Wang X, Goldman D (2011) Myogenin regulates denervation-dependent muscle atrophy in mouse soleus muscle.

Journal of cellular biochemistry 112:2149-2159.

Marques G, Bao H, Haerry TE, Shimell MJ, Duchek P, Zhang B, O'Connor MB (2002) The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33:529-543.

Marti E, Bumcrot DA, Takada R, McMahon AP (1995) Requirement of 19K form of Sonic hedgehog for induction of distinct ventral cell types in CNS explants. Nature 375:322-325.

McCabe BD, Marques G, Haghighi AP, Fetter RD, Crotty ML, Haerry TE, Goodman CS, O'Connor MB (2003) The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39:241-254.

Misgeld T, Burgess RW, Lewis RM, Cunningham JM, Lichtman JW, Sanes JR (2002) Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase. Neuron 36:635-648.

Nilsson EE, Skinner MK (2003) Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development. Biology of reproduction 69:1265-1272.

Nitkin RM, Smith MA, Magill C, Fallon JR, Yao YM, Wallace BG, McMahan UJ (1987) Identification of agrin, a synaptic organizing protein from Torpedo electric organ. The Journal of cell biology 105:2471-2478.

Nohe A, Keating E, Knaus P, Petersen NO (2004) Signal transduction of bone morphogenetic protein receptors. Cellular signalling 16:291-299.

Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T, Kubo S, Shiraishi H, Eguchi K, Motomura M, Akiyama T, Iwakura Y, Higuchi O, Yamanashi Y (2006) The muscle protein Dok-7 is essential for neuromuscular

synaptogenesis. Science 312:1802-1805.

Oppenheim RW, Prevette D, Haverkamp LJ, Houenou L, Yin QW, McManaman J (1993) Biological studies of a putative avian muscle-derived neurotrophic factor that prevents naturally occurring motoneuron death in vivo. Journal of neurobiology 24:1065-1079.

Oppenheim RW, Prevette D, Haverkamp LJ, Houenou L, Yin QW, McManaman J (1993) Biological studies of a putative avian muscle-derived neurotrophic factor that prevents naturally occurring motoneuron death in vivo. Journal of neurobiology 24:1065-1079.