• 沒有找到結果。

柚籽多醣體的黏度

第四章 討論

4.4. 柚籽多醣體的特性

4.4.2 柚籽多醣體的黏度

4.4. 柚籽多醣體的特性 4.4.1 柚籽多醣體的水合能力

表 3-6顯示,每克乾重的WE及Fraction B分別可水合9.4及15.2毫升 的水。Oakenfull (1980)指出,植物纖維 (plant fiber)的水合能力與木 質 素 (lignin) 及 纖 維 素 (cellulose) 的 含 量 呈 正 向 關 係 , 並 以 羥 基

OH)、乙醯胺基 (NHCOCH3)、氧雙鍵 (O)、羧基 (COOH)以及 硫 酸 基 (OSO3 等 親 水 性 的 官 能 基 與 水 分 子 鍵 結 。 馬 鈴 薯 (potato)、小麥麩 (wheat bran)、蠶豆 (broad beans)、梨 (pear)、春甘 藍 (spring cabbage)、蘋果 (apple)、芹菜 (celary)及萵苣 (lettuce)等纖 維的水合能力分別為2.0、3.0、4.1、7.4、11.3、12.1、19.2及23.7毫升 /克乾重。Bourquin等人 (1996)指出,玉米麩皮 (corn bran)、燕麥麩 皮纖維 (oat bran fiber)、大豆纖維 (soy fiber)、關華豆膠 (guar gum)、

阿拉伯膠 (arabic gum)、刺梧桐膠 (karaya gum)、三仙膠 (xanthan gum) 及仙人掌果膠 (citrus pectin)的水合能力分別為2.6、3.5、5.9、4.8、

10.5、11.7、12.2及16.6 毫升/克乾重,並且與醣醛酸含量呈顯著正相 關 (r2 =0.87)。本實驗結果證明,柚籽黏質具有良好的水合能力,

而且Fraction B的水合能力高於WE係因具有較高的醣醛酸含量。

4.4.2 柚籽多醣體的黏度

圖 3-5 顯示,WE 水溶液於室溫下的黏度曲線隨著濃度的增加而升 高,並且 1% (w/v) WE 水溶液的黏度可達 6000 cP 以上。Wannerbergera 等人 (1991)測定 23 種亞麻籽膠水溶液的黏度曲線,發現 1% (w/v)亞 麻籽膠水溶液於室溫下的黏度範圍為 20280 cP。Paula 等人 (2001)

45

指 出 , 1% 的 大 葉 合 歡 膠 (Albizia lebbeck gum) 水 溶 液 及 腰 果 膠 (cashew gum)於 25℃的黏度分別為 1.2 cP 及 1.0 cP。綜合上述,1% (w/v) 柚籽多醣體水溶液的黏度遠高於以上;因此,柚籽多醣體可期望做為 食品或化妝品中一項優良的增稠劑。許多文獻指出,膠體的黏度明顯 受到溫度、pH 值及陽離子濃度的影響。膠體黏度隨著陽離子濃度或 pH 值的增加而上升,溫度增加則黏度下降 (Medina-Torres et al., 2000;

Paula et al., 2001; Mueller et al., 2010)。本論文中 Fraction B 溶於二次 水不具有黏度特性,推測於陰離子交換層析過程使陽離子流失,亦是 可能原因之一 。

4.4.3 柚籽多醣體的抗氧化能力

本論文以清除 DPPH 自由基能力、SOD 活性測定及螯合亞鐵離子 能力試驗柚籽多醣體的抗氧化能力。自由基為具有不成對電子之化合 物,性質活潑不穩定,會攻擊體內細胞組織造成損傷。DPPH 自由基 是一相對安定的自由基,結構上有一個不成對電子,用來測試樣品提 供氫質子 (H+)以清除自由基之效力;短時間內可測試大量樣品,為 一 普 遍 試 驗 樣 品 提 供 氫 質 子 能 力 之 方 法 (Brand-Williams et al., 1995)。圖 3-6 顯示,雖然 WE 的清除 DPPH 自由基能力略高於 Fraction B,但兩者皆無明顯效果。Guendez 等人 (2005)以乙酸乙酯 (ethyl acetate)萃取 9 個品種的葡萄種子,發現其多元酚 (polyphenol)含量與 清除 DPPH 自由基能力呈顯著正相關 (r2 =0.6499)。Jiménez-Escrig 等 人 (2001) 分 別 以 50% 甲 醇 (methanol/water) 及 70% 丙 酮 (acetone/water)萃取藻類,其中甲醇萃取液含有高量的多元酚與清除

46

70℃及 80℃熱水萃取之白樺茸 (inonotus obliquus)多醣體,SOD 活性 依序為 1100、1700 及 2200 單位活性/克,認為多醣體的 SOD 活性與

47

(COOH)的含量具有明顯之相關性 (Gluske, 1980; Wilson et al., 1980;

Wilson et al., 1986)。Changa 等人 (2010)以 90℃熱水萃取紅棗多醣 體,並以 DEAE-cellucose 樹脂分離為一類中性多醣與三類酸性多醣。

三類 2.5 mg/mL 的紅棗酸性多醣之螯合亞鐵離子能力皆為 95%以上,

而相同濃度的水萃紅棗多醣體為 43%,紅棗中性多醣則相當低;

Changa 等人 (2010)認為,螯合亞鐵離子能力與醣醛酸含量呈正向關 係。但在本論文結果中,Fraction B 的醣醛酸含量較 WE 為高 (表 3-3),卻無顯著螯合亞鐵離子能力 (圖 3-7);推測可能原因為本論文 分析螯合亞鐵離子能力的方法中,5%的 ammonium acetate 試劑使反 應溶液呈酸性,造成 Fraction B 的羧基 (COOH)無法解離為羧酸根 離子 (COO),並抑制 Fraction B 的螯合亞鐵離子能力。許多文獻指 出,類黃酮 (flavonoid)含量與螯合亞鐵離子能力呈正向關係 (Acker et al., 1998; Heim et al., 2002; Ebrahimzadeh et al., 2009),推測以水萃 取的柚籽多醣體可能不含類黃酮,因此螯合亞鐵離子能力較弱。

4.4.4 柚籽多醣體對 NIH-3T3 細胞的毒性分析

細胞死亡主要為細胞壞死 (necrosis)及細胞凋亡 (apoptosis)兩種途 徑。細胞壞死是細胞受到外在因子 (例如輻射、紫外線等)或毒素所 引起,在光學顯微鏡下可觀察到細胞腫大、破裂,且胞內物質流出 (Majno and Joris, 1995; Broker et al., 2005 )。由活細胞數目及細胞外觀 型態,可判定樣品對細胞的毒性。圖 3-8 顯示,於細胞培養液添加不 同濃度的 WE 與 Fraction B,對小鼠纖維母細胞的細胞存活率皆無影 響。圖 3-9 顯示,添加 WE 與 Fraction B 培養 24 小時後的細胞型態,

48

添加前後皆無改變。綜合上述結果,WE 與 Fraction B 對小鼠纖維母 細胞不具細胞毒性。纖維母細胞 (fibroblasts)是真皮層 (dermis)的主 要細胞 (光井武夫,2005),因此可初步認為柚籽黏質用於化妝原料 對皮膚沒有刺激性。

49

第五章 未來研究方向

根據以上試驗結果,未來將有以下幾項發展方向:

1. 柚籽可做為一萃取多醣體的理想原料。但由於柚籽於室溫的萃取 率偏低,將繼續試驗最適萃取條件。

2. 利用氣相層析質譜與核磁共振儀解析Fraction B的未知醣醛酸及 醣苷鍵結,以確認Fraction B的果膠類型。

3. 分析Fraction A的單醣組成、醣苷鍵結及分子量,有助於了解柚籽 黏質的高黏度特性及凝膠機制。

4. 試驗溫度、pH值及陽離子濃度等條件對柚籽黏質的黏度之影響。

5. 分析水萃及有機溶劑萃取的柚籽黏質內,是否具有多元酚含量。

6. 解析柚籽黏質內的SOD活性來源物質。

7. 改良螯合亞鐵離子能力的試驗方法。可加入緩衝溶液使反應液為 中性,降低對實驗結果的影響。

8. 試驗柚籽黏質是否具有抗發炎作用。

9. 試驗柚籽黏質是否具有抗腫瘤活性。

10. 柚籽黏質有良好的水合能力。可利用角質含水測定儀(corneometer) 及穿皮水份流失儀(transepidermal water loss meter, TEWL)檢測柚 籽黏質對皮膚含水量的影響。

11. 初步認為柚籽黏質對於皮膚沒有刺激性。可利用皮膚測試貼布 (skin patch test),進行柚籽黏質對人體皮膚的過敏性評估。

12. 將柚籽黏質實際應用於食品、化妝品及藥物的添加劑。

50

表 3-1. 室溫水萃柚籽表面黏質物 (WE)的產率

Extract weight/seed dry weight (%)

WE 2.9 ± 0.0

WE 的產率是 WE 乾重相對於柚籽乾重之比率,數據為平均值± SEM (n=3)。

表 3-2. 以 DE-52 樹脂分離 WE 得到兩 fraction 的回收率

各 fraction 的回收率是回收的重量相對於所注入的 WE 乾重,Fraction A 是未吸 附的多醣,Fraction B 是 0.100.18 M NaCl 流洗出的多醣。數據為平均值± SEM (n=3)。

表 3-3. WE 與 Fraction B 的總醣、醣醛酸及蛋白質含量比率

數據為平均值± SEM (n=3)。

Fraction weight/WE weight (%)

Fraction A 8.3 ± 2.1

Fraction B 59.7 ± 0.6

Composition (%) WE Fraction B

Total sugar (as glucose equivalent) 42.6 ± 10.6 16.3 ± 3.7 Uronic acid (as galacturonic acid equivalent) 38.7 ± 3.6 53.4 ± 3.8 Protein (as albumin equivalent) 0.1 ± 0.0 0.2 ± 0.1

51

表 3-4. Fraction B 內中性單醣的相對比例

Relative proportions of neutral monosaccharides in Fraction B

Rhamnose 5

Arabinose 5

Galactose 3

Glucose 2

Mannose or Xylose 4

Fraction B 以 TFA 水解後,利用離子液相層析系統分析 Fraction B 的中性單醣之 相對比例。數據為三批的平均值。

表 3-5. Fraction B 的甲基化程度

Degree of methylation (%)

Fraction B 5.7 ± 1.3

樣品的甲基含量對醣醛酸含量之比率,數據為平均值± SEM (n=3)。

52

表 3-6. WE、Fraction B 與 Gluten 的水合能力

Water hydration capacity (mL/g DW)

WE 9.4 ± 0.3

Fraction B 15.2 ± 1.5

Gluten from wheat 1.3 ± 0.0

每克樣品乾重可水合的毫升數。數據為平均值± SEM (n=3)。

表 3-7. WE與Fraction B的Superoxide dismutase活性

SOD (units / g DW)

WE 7300 ± 700

Fraction B 3600 ± 300

EGCG 73300 ± 2500

每克樣品乾重所含的SOD活性單位。數據為平均值± SEM (n=3)。

53

54

圖 3-2. 以液相層析系統分析 Fraction B 的醣類成份層析圖

Fraction B 以 TFA 水解後,以液相層析系統 (Carbo PA10, Dionex)分析中性單醣 成份,圖中 y 軸為移動相中導電度的變化,x 軸則為分離物質的滯留時間。(A) peak 1 為 rhamnose,peak 2 為 arabinose,peak 3 為 galactose,peak 4 為 glucose,peak 5 為 mannose 或 xylose。(B) Fraction B 以 H2SO4水解後,以液相層析系統 (IonPac AS11, Dionex)分析醣醛酸成份,peak 2 為 Galacturonic acid,peak 3 為 Glucuronic acid,peak 1、4、5 則為未知物。

55

Absorbance

0.0 0.4 0.8

1.2 T 40

T 2000

T 500

T 70 (A)

Elution Volume (mL)

80 100 120 140

Absorbance

0.08 0.12 0.16

(B)

圖 3-3. 標準品 (A)與 Fraction B (B)在 Sephacryl® S-400 的分子篩層析圖 在 Sephacryl® S-400 以 0.2 M NaCl buffer 流洗標準品Blue dextran T2000、Dextran T500、Dextran T500、Dextran T40 與 Fraction B。(A) 以 660 nm 吸光值檢測 Blue dextran T2000 的溶離體積;依照總醣含量測定,以 490 nm 吸光值檢測其他標準 品的溶離體積。(B) 依照醣醛酸含量測定,以 520 nm 吸光值檢測 Fraction B 的 溶離體積。

56

Molecular Weight (kDa)

100 1000

K a v

0.00 0.25 0.50

T 40

T 70

T 500

T 2000 Fraction B

Fraction B

圖 3-4. 決定 Fraction B 的分子量

以標準品Blue dextran T2000、Dextran T500、Dextran T70 及 Dextran T40 在

Sephacryl® S-400 的 Kav 對應底數為 10 的對數分子量,製作 Kav 檢量線,並內

插計算 Fraction B 的 Kav,得知 Fraction B 的分子量。

57

Concentration (%, w/v)

0.00 0.25 0.50 0.75 1.00

Viscosity (cP)

0 2000 4000 6000

WE

Acacia gum

圖 3-5. 不同濃度的 WE 與阿拉伯膠水溶液於 27℃的黏度變化 數據為平均值± SEM (n=3)。

58 Concentration (mg/mL)

0 1 2 3 4

Scavenging (%)

0 40 80

WE Fraction B Ascorbic acid (A)

0.00 0.25 0.50 0.75 1.00

Ascorbic acid (B)

圖 3-6. 不同濃度的 WE、Fraction B 及 ascorbic acid 對清除 DPPH 自由基活性 之影響

(A) WE、Fraction B 以及 ascorbic acid 對 DPPH 自由基的清除能力。(B) 低 ascorbic acid 濃度對 DPPH 自由基的清除能力。數據為平均值± SEM (n=3)。

59 Concentration (mg/mL)

0 1 2 3 4

Chelating Effects (%)

0 50

100 WE

Fraction B EDTA

0.00 0.25 0.50 0.75 1.00

EDTA

(A) (B)

圖 3-7. 不同濃度的 WE、Fraction B 及 EDTA 對螯合亞鐵離子活性之影響 (A) WE、Fraction B 以及 EDTA 對亞鐵離子的螯合能力。(B) 低 EDTA 濃度對亞 鐵離子的螯合能力。數據為平均值± SEM (n=3)。

60

61

圖 3-9. 以倒立式相位差顯微鏡觀察小鼠纖維母細胞經 WE 與 Fraction B 處理 24 小時後之細胞型態變化

(A) 未添加 WE 的細胞外觀。(B) 未添加 Fraction B 的細胞外觀。(C) 含 10 μg/mL WE 的細胞外觀。(D) 含 10 μg/mL Fraction B 的細胞外觀。

62 pharmocology influence of iron chelation on the antioxidant activity of flavonoids. Biochemical Pharmacology 56: 935-943.

Anderson, D. M. W., McNab, C. G. A. and Anderson, C. G. (1982) Studies of uronic acid materials, part 58: Gum exudates from the genus Sterculia (gum karaya). International Tree Crops Journal 2: 147–154.

Anderson, D. M. W. and Morrison, N. A. (1990) The identification of combretum gums which are not permitted food additives, II. Food Additives and Contaminants 7: 181–188.

Arsovski, A. A., Villota, M. M., Rowland, O., Subramaniam, R. and Western, T. L. (2009) MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana. Journal of Experimental Botany 60: 2601–2612.

Bewley, J. D. and Black, M. (1994) Seeds: physiology of development and germination. Springer. New York.

Blumenkrantz, N., Asboe-Hansen, G. (1973) New method for quantitative determination of uronic acids. Analytical Biochemistry 54:

484–489.

Bourquin, L. D., Titgemeyer, E. C. and Fahey G. C. (1996) Fermentation of various dietary fiber sources by human fecal bacteria.

Nutrition Research 16: 1119–1131.

Bradford, K. J. and Nonogaki, H. (2007) Seed development, dormancy and germination. Wiley-Blackwell. Oxford and Iowa.

Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 72: 248–254.

63

Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995) Use of a free radical method to evaluate antioxidant activity. Food Science and Technology 28: 25–30.

Broker, L. E., Kruyt,F. A. E. and Giaccone, G. (2005) Cell death independent of caspases: a review. Clinical Cancer Research 11:

3155–3162.

Changa, S. C., Hsua, B. Y. and Chena, B. H. (2010) Structural characterization of polysaccharides from zizyphus jujuba and evaluation of antioxidant activity. International Journal of Biological Macromolecules 47: 445–453.

Chen, H. H., Xu, S. Y. and Wang, Z. (2006) Gelation properties of flaxseed gum. Journal of Food Engineering 77: 295–303.

Cui, W., Eskin, N. A. M. and Biliaderis, C. G. (1994) Fractionation, structural analysis, and rheological properties of water-soluble yellow mustard (Sinapis alba L.) polysaccharides. Journal of Agricultural and Food Chemistry 42(3): 657–664.

Cui, W. and Mazza, G. (1996) Physicochemical characteristics of flaxseed gum. Food Research International 29: 397–402.

Dinis, T. C. P., Maderia, V. M. C. and Almeida, L. M. (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitor of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics 315: 161–169.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F.

(1956) Colorimetric method for determination of sugars and related substances. Analytical chemistry 28: 350–356.

Ebrahimzadeh, M. A., Nabavi, S. M. and Nabavi, S. F. (2009) Correlation between the in vitro iron chelating activity and poly phenol and flavonoid contents of some medicinal plants. Pakistan Journal of Biological Sciences 12(12): 934–938.

Erskine, A.J. and Jones, J. K. N. (1956) Fractionation of polysaccharides.

Canadian Journal Chemistry 34: 821–826.

Fedeniuk, R. W. and Biliaderis, C. G. (1994) Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage.

64

Food Chemistry 42: 240–247.

Fekri, N., Khayami, M., Heidari, R. and Jamee R. (2008) Chemical analysis of flaxseed, sweet basil, dragon head and quince seed mucilages.

Research Journal of Biological Sciences 3: 166–170.

Garden, J. A. (1993) Flaxseed gum: extraction, characterization, and functionality. Dissertation Abstracts International 55 (5): 17 –20.

Gigli, J., Garnier, C. and Piazza, L. (2009) Rheological behaviour of low-methoxyl pectin gels over an extended frequency window. Food Hydrocolloids 23: 1406–1412.

Glusker, J. P. (1980) Citrate conformation and chelation: enzymic implications. Accounts of Chemical Research 13: 345–352.

Grubert, M. (1981) Mucilage or gum in seeds and fruits of angiosperms.

Minerva Publikation: 397.

Guendez, R., Kallithraka, S., Makris, D. P. and Kefalas, P. (2005) Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extracts: Correlation with antiradical activity.

Food Chemistry 89: 1–9.

Gutterman, Y. (1993) Seed germination in desert plants. Springer-Verlag.

Berlin.

Gutterman, Y. and Shemtov, S. (1996) Structure and function of the mucilaginous seed coats of Plantago coronopus inhabiting the Negev Desert of Israel. Israel Journal of Plant Sciences 44: 125–133.

Guo, Q., Cui, S. W., Wang, Q. and Young, J. C. (2008) Fractionation and physicochemical characterization of psyllium gum. Carbohydrate Polymers 73: 35–43.

Halliwell, B. (1994) Free radicals and antioxidants: a personal view.

Nutrition Reviews 52: 253–265.

Harholt, J., Suttangkakul, A. and Scheller H. V. (2010) Biosynthesis of pectin. Plant Physiology153: 384–395.

Heim, K. E., Tagliaferro, A. R. and Bobilya, D. J. (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships.

65

The Journal of Nutritional Biochemistry 13: 572–584.

Huang, Z. Y., Boubriak, I., Osborne, D.J., Dong, M. and Gutterman, Y.

(2008) Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions. Annals of Botany 101:

277–283.

Hu, H., Zhang, Z., Lei, Z., Yang, Y. and Sugiura, N. (2009) Comparative study of antioxidant activity and antiproliferative effect of hot water and ethanol extracts from the mushroom Inonotus obliquus.

Journal of Bioscience and Bioengineering 107: 42–48.

Janaki, B. and Sashidhar R. B. (1998) Physico-chemical analysis of gum kondagogu (Cochlospermum gossypium): a potential food additive. Food chemistry 61: 231–236.

Jiménez-Escrig, A., Jiménez-Jiménez, I., Pulido, R., Saura-Calixto, F. (2001) Antioxidant activity of fresh and processed edible seaweeds.

Journal of the Science of Food and Agriculture 81: 530–534.

Leroux,J., Langendorff,V., Schick,G., Vaishnav V. and Mazoyer, J.

(2003) Emulsion stabilizing properties of pectin. Food Hydrocolloids 17:

455–462.

Li, F. T.,Yang, H., Zhao, Y. and Xu, R. (2007) Novel modified pectin for heavy metal adsorption. Chinese Chemical Letters 18: 325–328.

Liu, L. S., Fishman, M. L. and Hicks, K. B. (2007) Pectin in controlled drug delivery – a review. Cellulose 14: 15–24.

Liu, L. S., Fishman, M. L. and Hicks, K. B. (2007) Pectin in controlled drug delivery – a review. Cellulose 14: 15–24.

相關文件