• 沒有找到結果。

第四章 晶片製作的實現與量測結果

4.4 比較

第五章

結論與未來研究方向

5.1 結論

本論文是提出跳頻式的 LNA,主要是將跳頻的觀念實現於電路當 中,利用寬頻的輸入來將使用於UWB 中的 3.9-7.1GHz 的信號接收下,

在利用跳頻的機制將所選擇的頻道信號送往後端,非屬於所需頻道中 的信號則會濾掉,如此一來可形成一個窄頻的增益輸出,便可以提高 功率增益也可以避免使用整個UWB 的頻寬做為 Full band 的輸出,不 需要考慮UWB LNA 在整個 Full band 中增益平坦度的問題,而使用窄 頻輸出在所需要的頻帶中提高增益的表現。晶片使用 TSMC 0.18um CMOS 製程,在整個論文中,討論了設計概念,模擬結果,量測結果 以及討論與比較,所有的電路是使用Eldo-RF 來進行模擬並在 CIC 完 成所有量測。

在討論整個跳頻式 LNA 電路的分析與研究中,主要著眼於輸入匹 配電路,跳頻開關電路,雜訊指數分析與增益分析四個部份,這些分 析與討論便可以架構出整個跳頻式LNA 的各個元素,而在電路模擬的 過程中,也是利用這些討論概念來加以驗證,而晶片的製作是使用

TSMC 0.18um CMOS 製程來實現,而由量測的結果我們可以得到 S11<-6.48dB,S22<-6.1dB,S21 在 channel 8 時有最大增益的輸出 5.6dB,最小的雜訊指數也是在 chhanel 8 (7.128 GHz)時的 5.8dB, P1dB 分別是-8dB 在 channel 2 (3.96GHz),-8dB 在 channel 3 (4.48GHz),-9dB 在channel 4 (5.01GHz), -10dB 在 channel 5 (5.54GHz),-2dB 在 channel 6 (6.07GHz) , -12dB 在 channel 7 (6.6GHz) , -10dB 在 channel 8 (7.12GHz)。IP3 的結果分別為 4.7dB 在 channel 2 (3.96GHz),4.8dB 在 channel 3 (4.48GHz),4.9dB 在 channel 4 (5.01GHz),7dB 在 channel 5 (5.54GHz),8dB 在 channel 6 (6.07GHz),6dB 在 channel 7 (6.6GHz),

3dB 在 channel 8 (7.12GHz),且跳頻的功能未能完全實現。

整個量測結果與量測結果有所差異,主要是在於晶片設計過程中,

使用五組開關電路造成LNA 與 Buffer 之間存在的 Ron以及Ld上所產生 的雜散電阻 Rd未妥切考量,導致總雜散電阻過大造成系統產生 power loss 現象而引起的增益失真;另外開關電路中的離散電容效應以及開關 電路彼此的隔離空間不足均導致使用 LC 共振原理的跳頻機制受到影 響,而未能達到跳頻的效果;以及,輸入阻抗匹配電路並未完全考慮 到連接線的效應使得離散電容效應的產生,使得模擬與實測結果產生 誤差,影響了整個電路的效能。

5.2 未來研究方向

使用於 UWB 的跳頻式的 LNA 在於要能覆蓋整個 UWB 頻帶中的 14 個 Band,為了能達到覆蓋 14 個頻道的目的,可以使用[22][23]的 multi-tap inductor 搭配不同的 C 來得到不同的 LC 共振頻率,如 Figure 5.1.1 的示意圖。

Figure 5.1.1 使用 Lmulti來產生multi-band LNA

如以論文所提五組電容開關電路搭配 1 組 Ld可以得到 7 個共振頻 率點,則搭配 2 個輸出的 multi-tap inductor,至少便可以獲得 10 組以 上不同的LC 共振頻率,達到擴展頻道的目的,而對開關電路來說,使 用五組不同電容與電晶體所組成的開關電路來說,容易導致電路佈局 上過長的線路,因此可以考慮使用可變電容架構來減少硬體架構上的 開關電路,而改以電壓控制不同的電容值,並可以減少線路連接的長

度而降低離散效應的影響。除了晶片硬體設計上的改善之外,另外更 需要考慮的每個 model 之間的離散效應的影響,包括了離散電容,阻 抗以及電感效應都必須要小心,所以使用EDA tool 粹取出離散效應對 晶片設計是很重要的。

跳頻式的LNA 可以在信號接收下來後馬上進行濾波的動作,可以使得 信號通過 LNA,系統便可確定這是所需要的資訊而不會在受到其它信 號的影響,也可以達到避免干擾的目的更可以降低系統設計的複雜度。

參 考 文 獻

[1] IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a). Available:

http://www.ieee802.org/15/TG3a.html

[2] A. Tanaka , H. Kodama, A. Kasamatsu, “Low-noise Amplifier with Center Frequency Hoping for an MB-OFDM UWB Receiver”, Joint UWBST&IWUWBS 2004, No. FA-4-4, May.20,2004

[3] Terada, T., Yoshizumi, S., Sanada, Y., and Kuroda, T., “Transceiver circuits for pulse-based ultra-wideband,” Circuits and System, 2004. ISCAS ’04. Proceedings of the 2004 International Symposium on Volume 4, Pages:IV -349-52, 23-26 May 2004

[4] ECMA-368 standard, “High Rate Ultra Wideband PHY and MAC standard 1st edition” Dec. 2005

[5] Thomas H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuit second edition,” Cambridge university press, 2003

[6] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “An Integrated CMOS Distributed Amplifier Utilizing Packaging Inductance,” IEEE Trans. Microwave Theory Tech., Vol. 45, pp. 1969-1975, Oct. 1997

[7] B. M. Ballweber, R. Gupta and D. J. Allstot, “ A Fully Integrated 0.5-5.5GHz CMOD Distributed Amplifier” ISSCC, Vol. 35, No. 2, February 2000.

[8] H. T. Ahn and D. J. Allsolt, “ A 0.5-8.5GHz Fully Differential CMOS Distributed Amplifier” ISSCC, Vol. 37, No. 8, August 2002.

[9] R. C. Liu, C. S. Liu, K. L. Deng, H. Wang, ”A 0.5-14GHz 10.6dB CMOS cascade Distributed Amplifier” Digest of Technical Paper, 2003 Symposium on VLSI Circuit, pp.139-141, June 12-14,2003.

[10] R. C. Liu, K. L. Deng, H. Wang, ”A 0.6-22GHz Broadband CMOS Distributed Amplifier” IEEE RFIC Symposium, pp.130-106 June 8-10,2003

[11] K. H. Chen, C. K. Wang, “A 3.1-10.6GHz CMOS Cascade Two-stage Distributed Amplifier for Ultra-Wideband Application” IEEE Asia-Pacific Conference on Advanced System Integrated Circuit, pp. 296-299, August 4-5, 2004.

[12] F. Bruccolerim E. A. M. Klumperink, and B. Nauta. “Noise canceling in

wideband CMOS LNAs” IEEE ISSCC Dig. Tech. Paper, vol. 1, pp. 406-407, Feb.

2002

[13] S. Andersson, C. Svensson, and O. Drugge, “ Wideband LNA for a multistandard wireless receiver in 0.18um CMOS” Proc. ESSCIRC, pp. 655-658, Sep. 2003 [14] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill

Science/Engineering/Math, 2000

[15] C. W. Kim, M. S. Kang, P. T. Anh, H. T. Kim, S. G. Lee, ”An Ultra-Wideband CMOS Low Noise Amplifier for 3-5GHz UWB system” IEEE Journal of Solid-State Circuit, Vol. 40, No. 2, pp. 544-547, Feb. 2005.

[16] A. Bevilacqan and A. Nikenjad, “An Ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receiver,” in Int. Solid-State Circuit Conf. Tech. Dig., pp. 2259-2268, Dec. 2004.

[17] Aly Ismail and Ascad A. Abidi, “A 3-10 GHz low-noise amplifier with wideband LC-ladder matching network,” Soild-state Circuits, IEEE Journal, Vol. 39, Issue 12, pp. 2269-2277, Dec. 2004

[18] B. Y. Chang, C. F Jou, “ Design of a 3.1-10.6GHz Low-Voltage, Low-Power CMOS Low-Noise Amplifier for Ultra-Wideband Receiver,” Microelectronics, 2004. ICM 2004 Proceeding. The 16th International Conference on, Volume 16, Issue 4, pp179 – 181, April 2006

[19] David. M. Pozar, “Microwave Engineering Second edition,” John Wiley & Sons, Ins, 1998

[20] H. J. Orchard, “Loss sensitivities in singly and double terminated filters,” IEEE Trans. Circuit Syst., vol. CAS-26, pp. 293-297, May 1979.

[21] A. J. Scholten, L. F. Tiemeijer, R. Van Langevelde, R. J. Havens, A. T. A. Zeger- van Duijnhoven, and V. C. Venezia, ”Noise modeling for RF CMOS circuit simulation,” IEEE Trans. Electron Device, vol 50, pp.618-652, Mar. 2003

[22] C. S. Wang, W. C. Li, C. K. Wang, “A Multi-Band Multi-Standard RF Front-End for IEEE 802.16a and IEEE 802.11a/b/g Application” IEEE ISCAS, 2005.

[23] W. C. Li, C. S. Wang, C. K. Wang, “A 2.4GHz/3.5GHZ/5GHz Multi-Band LNA with Complementary Switched Capacitor Multi-Tap inductor in 0.18um CMOS.”

Inter. Symposium on VLSI Design, Automation and Test, pp.83-86, Apr. 2006 [24] S.C. Shin, C. S. Lin, M. D. Tsai, K. Y. Lin, H. Wang, ”A Low-Voltage and

Variable-Gain Distributed Amplifier for 3.1-10.6GHz UWB system” IEEE Microwave and Wireless Components Letters, Vol. 16, No. 4, pp. 179-181, April 2006,

[25] F. Zhang, Peter R. Kinget, “ Low-Power Programmable Gain CMOS Distributed LNA” IEEE Journal od Solid-State Circuits, Vol. 41, No. 6, pp. 1333-1343, June 2006,

[26] R. Gharpurey, “ A oardband Low-Noise Front-End Amplifier for Ultra Wideband in 0.13um CMOS” IEEE Journal of Solid-state Circuits, Vol. 40, No. 9, pp.

1983-1986, Sep. 2005.

[27]S. K. Tang, K. P. Pun, C. S. Choy, C. F. Chan “ A Fully Differential Low Noise Amplifier with Real-Time Channel Hopping for Ultra-Wideband Wireless Application” ISCAS, pp. 4507-4510, May, 2006.

相關文件