• 沒有找到結果。

圖5-31為量測晶片時的測試設置方式,首先會將晶片放置於PCB電路板上並且鎊 線,使用Agilent E8257D來產生類比輸入信號,以E3610A供應晶片所需之電源,而取樣 時脈則是由Agilent N4910B提供。在輸出量測方面,則是由外部所選擇的測試模式來決 定所需之量測儀器。在測試模式A下,使用頻譜分析儀Agilent E4440A,以量測晶片之 動態參數。當選擇測試模式B時,則是使用高速示波器Agilent 86100B來紀錄輸出波形,

再使用電腦來計算,以求得電路靜態參數得量測結果。如此,可以藉由此種設置方式來 量測出所需要的效能參數,則可代入式5.1來計算出FoM的大小,以得知晶片的效能表現

為何。圖5-32為PCB上的量測電路設計,輸入信號經由交流耦合的方式送入晶片內,在 輸出端則是使用50Ω與儀器做阻抗匹配。

Agilent E8257D Analog Input

Agilent E3610A Power Supply

Agilent N4910B Clock Source

Agilent E4440A PSA Spectrum Analyzer

Agilent 86100B Oscilloscope

Chip

圖5-31 量測晶片儀器設置

圖5-32 PCB 量測電路

第六章

結論

本論文提出一個可以藉由改變不同的傳輸閘阻值來做頻寬補償的方法,其可延展頻 寬但不會額外消耗功率,所以可達成高速且低功率的目的。此外,在設計上亦提出數位 化的吉伯特元件與差動放大器,除了能以全數位化的方式來實現整體類比數位轉換器之 外,其在設計上只要先設計出單位大小的反相器,則可藉由改變輸入驅動對、回授網路 與自我偏壓電路三者的比例來得到所需的增益,且其電路架構對於抗拒雜訊的能力亦非 常良好。此外,在類比數位轉換器中,追蹤與保持電路所消耗的功率也不容小覷,所以 在此亦使用數位化差動放大器來實現高速且低功率的追蹤與保持電路,達成全數位化與 低功率的目的。在數位編碼器方面則是使用格雷碼編碼器來實現,其受亞穩態的影響最 低,並且將其管線化使之能操作在5GHz 的高速要求。在數位類比轉換器方面,其在偏 壓電路的設計中使用回授的方式來產生所需的偏壓,使之能在製程變異時,能隨運作環 境來產生正確的偏壓,使輸出電流有達到預期的大小,此外,亦考量到電流鏡與供應電

源的誤差,將這些非理想效應考量入內,以設計出一個高精準度的數位類比轉換器,使 之能作為傳送器與測試電路。在解碼器方面,則是使用分段式控制的解碼方式,可以得 到一個在效能與面積都有非常好表現的控制電路。在內建測試電路方面,其可藉由切換 信號路徑的方式來選擇測試模式,分別有模式 A 與模式 B 兩種測試模式,測試模式 A 是將本身已有之數位類比轉換器來把類比數位轉換器的輸出轉為類比信號,所以可直接 對數位類比轉換器輸出的類比信號做頻譜分析,則可量測到類比數位轉換器的動態效能 參數,在測試模式B 下,內建的數位三角波產生器會啟動,其可產生低速三角波信號來 測試出INL 與 DNL 等靜態參數。在類比數位轉換器方面,則是透過輸出驅動電路來將 信號傳至晶片外部,因此可輸入慢速的鋸齒波信號來測試出INL 與 DNL。

在類比數位轉換器的結果方面,其INL 變化範圍為 0.31LSB 到-0.24LSB,而 DNL 則是由0.16LSB 到-0.1LSB,其結果都小於 0.5LSB,且頻譜分析的模擬結果顯示出 ENOB 為3.9 位元,此外,在 Nyquist Frequency 內所有的 ENOB 都有大於 3 位元,所消耗的功 率為33.7mW。最後將整體電路模擬結果與近年來的期刊論文比較,其品質因數方面有 非常良好的表現。而數位類比轉換器INL 變化範圍為 0.07LSB 到-0.06LSB,DNL 則是 由 0.07LSB 到-0.03LSB,其結果亦小於 0.5LSB, ENOB 高達 3.9 位元,且在 Nyquist Frequency 內所有的 ENOB 都非常接近 4 位元,而所消耗的功率為 18.9mW,由此可知 其非常適合用於測試與發送信號。最後將類比數位轉換器、數位類比轉換器以及內建測 試電路組合成整體系統,當選則測試模式A 時,其 ENOB 的輸出結果為 3.9 位元,顯示 整體電路有正常運作,所以輸出結果的表現上仍含單獨測試一樣。此外,亦模擬操作在 測試模式B 下的靜態參數,其所得到之 INL 變化範圍由 0.09LSB 到-0.09LSB,而 DNL 則是由0.11LSB 到-0.09LSB,其線性度非常高,其整體系統的消耗功率為 61.9mW。

在本論文中已設計出一個高速且低功率的快閃式類比數位轉換器,其在品質因數方 面表現非常良好,且亦設計出一個高速且失真度低的數位類比轉換器,使之能用於發送

信號與測試類比數位轉換器,最後在內部加入測試電路,使之能降低測試設置的複雜度 且提升可測試性。

參考文獻

[1] K. Farzan and D. A. Johns, “A CMOS 10-gb/s power-efficient 4-PAM transmitter,”

IEEE Journal of Solid-State Circuits, vol. 39, pp. 529-532, 2004.

[2] B. Razavi, “ Principles of Data Conversion System Design,” IEEE Press, 1995.

[3] F. Maloberti, “Data converters,” Springer Press, 2007.

[4] D. A. Johns and K. Martin , “Analog Integrated Circuit Design,” John Wiley and Sons Inc., 1997

[5] P. E. Allen, “CMOS Analog IC Design, 2nd Edition,” Oxford University Press, 2002 [6] R. J. Baker, “CMOS Circuit Design Layout and Simulation, 2nd Edition,” IEEE Press,

2005

[7] M. Gustavsson, J. J. Wikner and N. N. Tan, “CMOS Data Converters for Communications,” Kluwer Academic Publishers, 2000

[8] C. W. Mangelsdorf, “A 400-MHz input flash converter with error correction,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 184-191, 1990.

[9] K. Ono, T. Matsuura, E. Imaizumi, H. Okazawa, and R. Shimokawa, “Error suppressing encode logic of FCDL in a 6-b flash A/D converter,” IEEE Journal of Solid-State Circuits, vol. 32, pp. 1460-1464, 1997.

[10] S. Tsukamoto, W. G. Schofield, and T. Endo, “A CMOS 6-b, 400-MSample/s ADC with error correction,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 1939-1947, 1998.

[12] K. Uyttenhove and M. S. J. Steyaert, “A 1.8-V 6-bit 1.3-GHz flash ADC in 0.25μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 1115-1122, 2003.

[13] D. Dalton, G. Spalding, H. Reyhani, T. Murphy, K. Deevy, M. Walsh, and P. Griffin,

“A 200-MSPS 6-bit flash ADC in 0.6-μm CMOS,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 1433-1444, 1998.

[14] J. G. Kenney, G. Rangan, K. Ramamurthy, and G. Temes, “An enhanced slew rate source follower,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 144-146, 1995.

[15] H. V. D. Ploeg and R. Remmers, “A 3.3-V, 10-b, 25-MSample/s two-step ADC in 0.35-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 1803-1811, 1999.

[16] I. Mehr and D. Dalton, “A 500-MSample/s, 6-bit Nyquist-rate ADC for disk-drive read-channel applications,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 912-920, 1999.

[17] K. Nagaraj, D. A. Martin, M. Wolfe, R. Chattopadhyay, S. Pavan, J. Cancio, and T. R.

Viswanathan, “A dual-mode 700-Msamples/s 6-bit 200-Msamples/s 7-bit A/D converter in a 0.25-μm digital CMOS process,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1760-1768, 2000.

[18] M. Choi and A. A. Abidi, “A 6-b 1.3-Gsample/s A/D converter in 0.35-μm CMOS,”

[19] V. Srinivas, S. Pavan, A. Lachhwani, and N. Sasidhar, “A Distortion Compensating Flash Analog-to-Digital Conversion Technique,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 1959-1969, 2006.

[20] K. Deguchi, N. Suwa, M. Ito, T. Kumamoto, and T. Miki, “A 6-bit 3.5-GS/s 0.9-V 98-mW Flash ADC in 90-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, pp. 2303-2310, 2008.

[21] Y. Hairong and M. C. F. Chang, “A 1-V 1.25-GS/S 8-Bit Self-Calibrated Flash ADC in 90-nm Digital CMOS,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, pp. 668-672, 2008.

[22] M. A. M. Zin, H. Kobayashi, K. Kobayashi, J. I. Ichimura, S. Hao, Y. Onaya, Y.

Kimura, Y. Yuminaka, Y. Sasaki, K. Tanaka, and F. Abe, “A high-speed CMOS track/hold circuit,” IEEE International Conference on Electronics, Circuits and Systems, pp. 1709-1712, vol.3 , 1999.

[23] H. Kobayashi, M. A. Mohamed Zin, K. Kobayashi, H. San, H. Sato, J. I. Ichimura, Y.

Onaya, Y. Takahashi, N. Kurosawa, and Y. Kimura, “High-speed CMOS Track/Hold circuit design,” Analog Integrated Circuits and Signal Processing, vol. 27, pp.

165-176, 2001.

[24] J. Xicheng, W. Zhengyu, and M. F. Chang, “A 2 GS/s 6 b ADC in 0.18μm CMOS,”

IEEE International Solid-State Circuits Conference, pp. 322-497, vol.1, 2003.

[25] B. Verbruggen, J. Craninckx, M. Kuijk, P. Wambacq, and G. V. D. Plas, “A 2.2 mW 1.75 GS/s 5 Bit Folding Flash ADC in 90 nm Digital CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 874-882, 2009.

[26] H. Dinc and P. E. Allen, "A 1.2 GSample/s Double-Switching CMOS THA With -62 dB THD," IEEE Journal of Solid-State Circuits, vol. 44, pp. 848-861, 2009.

[27] R. V. D. Plassche, “CMOS Analog-to-Digital and Digital-to- Analog Converters 2nd Edition,” Springer Press, 2003

[28] B. Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw-Hill, 2000

[29] J. Krupar, R. Srowik, J. Schreiter, A. Graupner, R. Schuffny, and U. Jorges,

“Minimizing charge injection errors in high-precision, high-speed SC-circuits “ IEEE International Symposium on Circuits and Systems, pp. 727-730 vol. 1, 2001.

[30] Y. Wei, S. Subhajit, B. H. Leung, “Distortion Analysis of MOS Track-and-Hold Sampling Mixers Using Time-Varying Volterra Series,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, pp. 101-113, 1999.

[31] A. G. W. Venes and R. J. V. D. Plassche, “An 80-MHz, 80-mW, 8-b CMOS folding A/D converter with distributed track-and-hold preprocessing,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 1846-1853, 1996.

[32] C. L. Portmann and T. H. Y. Meng, “Power-efficient metastability error reduction in CMOS flash A/D converters,” IEEE Journal of Solid-State Circuits, vol. 31, pp.

1132-1140, 1996.

[33] J. H. Atherton and H. T. Simmonds, “An offset reduction technique for use with CMOS integrated comparators and amplifiers,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1168-1175, 1992.

[34] B. Razavi and B. A. Wooley, “Design techniques for high-speed, high-resolution comparators,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 1916-1926, 1992.

[35] K. L. J. Wong and C. K. K. Yang, “Offset compensation in comparators with minimum input-referred supply noise,” IEEE Journal of Solid-State Circuits, vol. 39, pp.

837-840, 2004.

[36] Y. Kwangho, P. Sungkyung, and K. Wonchan, “A 6 b 500 MSample/s CMOS flash ADC with a background interpolated auto-zeroing technique,” IEEE International Solid-State Circuits Conference, pp. 326-327, 1999.

[37] C. K. K. Yang, V. Stojanovic, S. Modjtahedi, M. A. Horowitz, and W. F. Ellersick, “A serial-link transceiver based on 8-GSamples/s A/D and D/A converters in 0.25-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 1684-1692, 2001.

[38] C. Donovan and M. P. Flynn, “A “digital” 6-bit ADC in 0.25-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 432-437, 2002.

[39] M. P. Flynn, C. Donovan, and L. Sattler, “Digital calibration incorporating redundancy of flash ADCs,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, pp. 205-213, 2003.

[40] P. C. S. Scholtens and M. Vertregt, “A 6-b 1.6-Gsample/s flash ADC in 0.18-μm CMOS using averaging termination,” IEEE Journal of Solid-State Circuits, vol. 37, pp.

1599-1609, 2002.

[41] P. M. Figueiredo and J. C. Vital, “Averaging technique in flash analog-to-digital converters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp.

233-253, 2004.

[42] J. Gu, Y. Lian, and B. Shi, “Design and analysis of a high-speed comparator,” IEEE International Workshop on Radio-Frequency Integration Technology: Integrated Circuits for Wideband Communication and Wireless Sensor Networks, pp. 215-218, 2005.

[43] G. M. Yin, F. O. Eynde, and W. Sansen, “A high-speed CMOS comparator with 8-b resolution,” IEEE Journal of Solid-State Circuits, vol. 27, pp. 208-211, 1992.

[44] A. Ismail and M. Elmasry, “Analysis of the Flash ADC Bandwidth-Accuracy Tradeoff in Deep-Submicron CMOS Technologies,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, pp. 1001-1005, 2008.

[45] P. Sunghyun, Y. Palaskas, and M. P. Flynn, “A 4-GS/s 4-bit Flash ADC in 0.18-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 1865-1872, 2007.

[46] C. C. Ying, M. Le, and K. K. Young, “A low power 6-bit flash ADC with reference voltage and common-mode calibration,” IEEE Symposium on VLSI Circuits, pp. 12-13,

[46] C. C. Ying, M. Le, and K. K. Young, “A low power 6-bit flash ADC with reference voltage and common-mode calibration,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 1041-1046, 2009.

[47] B. Verbruggen, J. Craninckx, M. Kuijk, P. Wambacq, and G. V. D. Plas, “A 2.2 mW 1.75 GS/s 5 Bit Folding Flash ADC in 90 nm Digital CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 874-882, 2009.

[48] A. Ismail and M. Elmasry, “A 6-Bit 1.6-GS/s Low-Power Wideband Flash ADC Converter in 0.13-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol.

43, pp. 1982-1990, 2008.

[49] H. Pan and A. A. Abidi, “Spatial filtering in flash A/D converters,” IEEE Transactions on Circuits and Systems-II-Analog Digital Signal Processing, vol. 50, pp. 424-436, 2003.

[50] K. Uyttenhove and M. S. J. Steyaert, “Speed-power-accuracy tradeoff in high-speed CMOS ADCs,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, pp. 280-287, 2002.

[51] C. Sandner, M. Clara, A. Santner, T. Hartig, and F. Kuttner, “A 6-bit 1.2-GS/s low-power flash-ADC in 0.13-μm digital CMOS,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 1499-1505, 2005.

[52] H. W. Lu, C. C. Su, and C. N. Liu, “A Scalable Digitalized Buffer for Gigabit I/O,”

IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, pp. 1026-1030, 2008.

[53] B. Nauta, “A CMOS transconductance-C filter technique for very high frequencies,”

IEEE Journal of Solid-State Circuits, vol. 27, pp. 142-153, 1992.

[54] E. Sall, M. Vesterbacka, and K. O. Andersson, "A study of digital decoders in flash analog-to-digital converters," International Symposium on Circuits and Systems,Vol.1, pp. I-129-I-132, 2004.

[55] A. S. Masood, R. Rabin, and S. Mohamad, "Digital Encoders for High Speed Flash-ADCs: Modeling and Comparison," IEEE North-East Workshop on Circuits and Systems, pp. 69-72, 2006.

[56] P. Pereira, J. R. Fernandes, and M. M. Silva, "Wallace tree encoding in folding and interpolation ADCs," International Symposium on Circuits and Systems, vol.1, pp.

I-509-I-512 , 2002.

[57] L. Daegyu, Y. Jincheol, C. Kyusun, and J. Ghaznavi, "Fat tree encoder design for ultra-high speed flash A/D converters," Midwest Symposium on Circuits and Systems, vol.2, pp. II-87-II-90, 2002.

[58] Y. J. Chuang, H. H. Ou, and B. D. Liu, "A novel bubble tolerant thermometer-to-binary encoder for flash A/D converter," International Symposium on VLSI Design, Automation and Test , pp. 315-318, 2005.

[59] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE Journal of Solid-State Circuits, vol. 24, pp. 62-70, 1989.

[60] S. H. Yang, Y. You, and K. R. Cho, “A New Dynamic D-Flip-Flop Aiming at Glitch and Charge Sharing Free,” IEICE transactions on electronics, vol. 86, pp. 496-505, 2003.

[61] J. Deveugele and M. S. J. Steyaert, “A 10-bit 250-MS/s binary-weighted current-steering DAC,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 320-329, 2006.

[62] A. Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 315-324, 2001.

[63] K. O'Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, “A 12-bit 320-MSample/s current-steering CMOS D/A converter in 0.44 mm2,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1064-1072, 2004.

[64] S. Dongwon and G. H. McAllister, “A Low-Spurious Low-Power 12-bit 160-MS/s DAC in 90-nm CMOS for Baseband Wireless Transmitter,” IEEE Journal of Solid-State Circuits, vol. 42, pp. 486-495, 2007.

[65] X. Wu, P. Palmers, and M. Steyaert, “A 130 nm CMOS 6-bit Full Nyquist 3 GS/s DAC,” IEEE Jornal of Solid-State Circuits, vol. 43, pp. 2396-2403, 2008.

[66] C. H. Lin, F. M. I. Goes, J. R. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, L.

Xiaodong, and K. Bult, “A 12 bit 2.9 GS/s DAC With IM3 < 60 dBc Beyond 1 GHz in 65 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, pp. 3285-3293, 2009.

[67] A. Bosch, M. Steyaert, and W. Sansen, “SFDR-bandwidth limitations for high speed high resolution current steering CMOS D/A converters,” IEEE International Conference on Electronics, Circuits and Systems, 1999, pp. 1193-1196 vol.3.

[68] S. C. Liang, D. J. Huang, C. K. Ho, and H. C. Hong, "10 GSamples/s, 4-bit, 1.2V, design-for-testability ADC and DAC in 0.13μm CMOS technology," IEEE Asian Solid-State Circuits, pp. 416-419, 2007.

[69] K. Martin, “Digital Integrated Circuit Design,” Oxford University Press, 1997.

相關文件