• 沒有找到結果。

The SOHOS structure using HfO2 as trapping layer has attracted much attention for nonvolatile Flash memory device. While there are many advantages of it, the retention performance of HfO2 is worse than Si3N4 actually. In this study, we use CF4 plasma treatment process on the trapping layer to improve the retention performance. We fabricate the capacitors and devices with and without CF4 plasma treatment and probe into the electrical characteristics of them.

Moreover, we confirm results by material analysis. From the electrical measurement, those results indicate that the CF4 plasma treatment process is applied not only in capacitor structures but also in integrated Flash memory cells and can improve the data retention all. Hence, we consider the CF4 plasma treatment process can modify the reliabilities of Flash memory indeed. In addition, we adopt standard CMOS manufacturing processes in this study. It means that the improvement method doesn’t need impracticable process in industry manufacturing. So the CF4 plasma treatment process is suitable for the foundries which request low cost and efficiency today.

- 47 -

Post deposition treatment of

HfO2

Temperature(℃) Power(W) Time(sec) Gas

Cap-R1 RTA 600 ━ 30 N2

Cap-R2 RTA 600 ━ 60 N2

Cap-R3 RTA 700 ━ 30 N2

Cap-P4 Plasma 40 30 CF4

Cap-P5 Plasma 50 30 CF4

Cap-P6 Plasma 60 30 CF4

Cap-P7 Plasma 70 30 CF4

Table 3.1: The split table of capacitors

Post deposition treatment of HfO2

Fluorine Implant

Power(W) Time(sec) Gas

Control NO treatment No

P40 Plasma Yes 40 30 CF4

P50 Plasma No 50 30 CF4

Table 3.2: The split table of SOHOS Flash memory devices

- 48 - Fig 3-1(a): Schematic cross section of the HfO2 capacitors.

150 Å Blocking oxide

5000 Å Backside Al 5000 Å Al electorde

50 Å HfO2 B.O.E strip backside oxide 30 Å Dry oxide

6” P-type Si wafer

CF4 plasma treatment

RTA

Fig 3-1(b): Process flows for fabricating various HfO2 capacitors.

- 49 -

Poly Gate 2000 Å LPCVD TEOS 200 Å HfO2 layer 50 Å

Dry Oxide 30Å

S /D junction formation P-type Si substrate

Fig 3-2(a): Schematic cross section of the HfO2 SOHOS device.

6” P-type Si wafer

400℃H2/N2 Sintering Contact hole and

metallization 5000Å Passivation oxide

LOCOS W/O fluorine implantation

2000Å Poly gate

S/D implantation & 950℃

30s activation

30 Å Dry oxide

50 Å HfO2

W/O CF4 plasma treatment

100 Å Blocking oxide

Fig 3-2(b): Process flows for fabricating HfO2 SOHOS device.

- 50 -

Fig. 3-3: SIMS profile of capacitors with CF4 plasma treatment

-10 -8 -6 -4 -2 0 2 4 6 8 10

treatment after bidirectional sweeps

- 51 -

M e m or y W indow (V ) 600

o

C 30S

600

o

C 60S

M e m or y W indow ( V ) 60W 30S

70W 30S

Fig 3-4(c): The memory window characteristic of capacitors with CF4 plasma treatment

- 52 -

Fig 3-4(d): The comparisons of the memory window characteristic for RTA and CF4 plasma treatment capacitor

20 30 40 50 60 70

- 53 -

Fig 3-6: The comparisons of the gate leakage current-voltage (IG-V) characteristics for RTA and CF4 plasma treatment capacitors

100 101 102 103 104

Fig 3-7(a): The retention characteristics of capacitors with RTA treatment at room temperature

- 54 -

Fig 3-7(b): The retention characteristics of capacitors with CF4 plasma treatment at room temperature

- 55 -

600oC 30S 50W30S 60W30S 70W30S 0.10

Fig 3-9: The comparisons of the surface roughness for HfO2 with RTA and CF4

plasma treatment by AFM

- 56 -

600o C 30S 60W 30S 70W 30S

as-de posi t 4.8

5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8

T h ickn e ss( n m )

Fig 3-10: The comparisons of the thickness for HfO2 with RTA and plasma treatments

Fig 3-11: Schematic diagram of the capacitor with CF4 plasma treatment.

Oxygen vacancy is defined as OV in the figure

- 57 -

- 58 -

Fig 3-13(a): Program characteristics of P40 with different operating condition

1E-6 1E-5 1E-4 1E-3 0.01 0.1 1

Fig 3-13(b): Erase characteristics of P40 with different operating condition

- 59 -

Fig 3-14(a): Program characteristics of P50 with different operating condition

1E-6 1E-5 1E-4 1E-3 0.01 0.1 1

Fig 3-14(b): Erase characteristics of P50 with different operating condition

- 60 -

Fig 3-15(a): Program characteristics of Control with different operating condition

Fig 3-15(b): Erase characteristics of Control with different operating condition

- 61 -

Figure 3-16: The comparisons of the retention characteristic for Control and CF4

plasma treatment devices at room temperature

101 102 103 104

Figure 3-17: The comparisons of the retention characteristic for Control and P50 at different temperatures

- 62 -

Figure 3-18: The comparisons of the retention characteristic for Control and CF4

plasma treatment devices at room temperature after 104 cycles

1 10 100 1000 10000

0.6

Figure 3-19: The comparisons of the endurance characteristic for Control and CF4 plasma treatment devices

- 63 -

CHAPTER 4

Conclusion and Suggestion for Future Work 4.1 Conclusion

In order to improve the programming speed and lower the programming voltage of SONOS Flash memory, Si3N4 trapping layer is replaced by HfO2 trapping layer and called SOHOS-type Flash memory. While there are many advantages of SOHOS, the retention performance of SOHOS is worse than SONOS.

In this study, we focus on how to improve the reliability of SOHOS-type Flash memory. The CF4 plasma treatment process is proposed here and it can promote the reliability characteristics. From the measurement results of capacitors and devices, we confirm that the CF4 plasma treatment process is practicable. It can promote the data retention of Flash memory. The better performance attributes to that the CF4 plasma treatment process can diffuse the fluorine into the trapping layer. The fluorine is incorporated into the HfO2 trapping layer and then formed of Hf-F bonding with hafnium. Because of CF4

plasma treatment, the shallow traps would be recovered by the fluorine but the deep traps would still be left. Hence, the carriers’ de-trapping effect is decreased after program operation and the retention performance is improved.

According to the experiment result, the retention performance of SOHOS-type Flash memory, carried out CF4 plasma treatment, is actually improved. Moreover, CF4 plasma treatment is compatible with the conventional SONOS memory process and is also the low thermal budget process which

- 64 -

would not make the HfO2 film more crystallized. Therefore, we all consider the process technology is potential and expectable gradually for the memory device in the future.

4.2 Suggestions of the Future Work

1. More HRTEM images to evidence the precise thickness of the every layer.

2. Find the optimum condition of CF4 plasma treatment for memory device.

3. Apply to other memory structure using HfO2 as trapping layer.

(a) Tunnel layer ex: BE-SONOS (b) Blocking layer ex: Al2O3

(c) Gate ex: metal gate TaN

- 65 -

Reference

[1] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288 (1967).

[2] Seiichi Aritome, “Advanced Flash Memory Technology and Trends for Files Storage Application”, pp.763, IEDM 2002.

[3] D.J. Jung, “Highly Manufacturable 1T1C 4Mb FRAM with Novel Sensing Scheme”, pp.279-282, IEDM 1999.

[4] “Advanced Memory Technology and Architecture”, short course, IEDM 2001.

[5] S. Lai and T. Lowrey, “OUM- A 180nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications”, pp.803, IEDM 2001.

[6] Paolo Cappelletti, “Flash Memories”, Kluwer Academic Publishers, 1999.

[7] Pier Luigi Rolandi et al, “A 4-bit/cell Flash Memory Suitable for Stand-Alone and Embedded Mass Storage Applications”, pp.75, Non-Volatile Semiconductor Memory Workshop, Monterey, CA 2000.

[8] A.J. Walker et al, “ 3D TFT-SONOS Memory Cell for Ultra-High Density File Storage Applications”, 2003 Symposium on VLSI Technology.

[9] Takuya Kitamura et al, “ A Low Voltage Operating Flash Memory Cell with High Coupling Ratio Using Horned Floating Gate with Fine HSG”, pp.104-105, 1998 Symposium on VLSI Technology.

[10] A.Fazio, “0.13um Logic+Flash: Technology and Applications”, Non-Volatile Semiconductor Memory Workshop, Monterey, CA 2000.

[11] Stephen Keeney, “A 130nm Generation High Density ETOXTM Flash Memory Technology,” IEDM Tech. Dig., p.41-44,2001.

- 66 -

[12] J. D. Blauwe, “Nanocrystal Nonvolatile Memory Devices,” IEEE Transactions on Nanotechnology., vol. 1, pp. 72-77, 2002.

[13] M. H. White, D. A. Adams, J. Bu, “On the Go with SONOS,” IEEE Circuits and Devices Magazine., vol. 16, pp. 22-31, 2000.

[14] H.E. Maes, J.S. Witters, G. Groeseneken, "Trends in non-volatile memory devices and technologies", Proceedings of the 17th ESSDERC-conference, Invited paper, pp. 743-754, 1987, and in Solid State Devices, North Holland Publishing Company, Eds. G. Soncini, P.U. Calzolari, pp. 157-168, 1987.

[15] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage,” IEEE Int.

Electron Devices Meeting Tech. Dig., pp. 521-524, 1995.

[16] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, Y. Lee, “Room temperature operation of a quantum-dot flash memory,” IEEE Electron Device Letters., vol.

18, pp. 278-280, 1997.

[17]Y. C. King, T. J. King, C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex,” IEEE Int. Electron Devices Meeting Tech. Dig., pp.115-118, 1998.

[18] S. Lai, “Tunnel Oxide and ETOX Flash Scaling Limitation,” IEEE International Non –Volatile Memory Conference, pp. 6 -7, 1998.

[19] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O'Connell, R. E.

Oleksiak, “The variable threshold transistor, a new electrically alterable nondestructive read-only storage device,” presented at the Internat'l Electron Devices Meeting, 1967.

[20] “Test and Test equipment” in The International Technology Roadmap for

- 67 -

Semiconductors (ITRS), 2001, pp.27-28.

[21] Y.N. Tan, W.K. Chim, W.K. Choi, M.S. Joo, T.H. Ng, and B.J. Cho,

“High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation,” in IEDM Tech. Dig., 2004, pp.889-892.

[22] W.J. Zhu, Tso-Ping Ma, Takashi Tamagawa, J. Kim, and Y. Di. “Current Transport in Metal/Hafmium Oxide/Silicon Structure,” IEEE electron Device Letters., vol.23, no.2, pp.97-99, Feb. 2002.

[23] G. D. Wilk, R.M. Wallace, J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations”, Applied Physics Review, vol.89, no. 10, pp.5243-5275, Nay 2001.

[24] T.Sugizaki, M.Kobayashi, M.Ishidao, H.Minakata, “Novel Multi-bit SONOS Type Flash Memory Using a High-k Charge Trapping Layer”, Symposium on VLSI Technology Digest of Technical Papers, 2003.

[25] M. White et al., IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 20, p.190, 1997.

[26]H.-H. Tseng, P. G.Y. Tsui, P. J. Tobin, J. Mogab, M. Khare, X.W. Wang, T.

P. Ma, R. Hegde, C. Hobbs, J. Veteran, M. Hartig, G. Kenig, V. Wang, R.

Blumenthal, R.Cotton, V. Kaushik, T. Tamagawa, B. L. Halpern, G. J. Cui, J. J.

Schmitt, “Application of JVD nitride gate dielectric to a 0.35 micron CMOS process for reduction of gate leakage current and boron penetration,” in IEDM Tech. Dig., pp. 647-650, 1997.

[27]A. Melik-Martirosian, T. P. Ma, X. W. Wang, X. Guo, F. P. Widdershoven, D. R. Wolters, V. J.D. van der Wal, M. J. van Duuren, ”Demonstration of a flash memory cell with 55 A EOT silicon nitride tunnel dielectric,” in Symp. VLSI

- 68 -

Tech. Dig., pp. 138 -141, 2001.

[28]Y. Shi, X. Wang, T. P. Ma, “Electrical properties of highquality ultrathin nitride/oxide stack dielectrics," IEEE Transactions on Electron Devices, vol.

46, pp. 362-368, 1999.

[29]J. Kim, J. D. Choi, W. C. Shin, D. J. Kim, H. S. Kim, K. M. Mang, S. T.

Ahn, O. H. Kwon, “Scaling down of tunnel oxynitride in NAND flash memory:

oxynitride selection and reliabilities," in Proc. IRPS, pp. 12-16, 1997.

[30]U. Sharma, R. Moazzami, P. Tobin, Y. Okada, S. K. Cheng, J. Yeargain,

“Vertically scaled, high reliability EEPROM devices with ultra-thin oxynitride films prepared by RTP in N2O/O2 ambient," in IEDM Tech. Dig., pp.

461-464, 1992.

[31] P. Pavan, R. Bez, P. Olivo, E. Zanoni, “Flash memory cells—An overview,”

Proc. IEEE, vol. 85, pp. 1248-1271, 1997.

[32] M. Woods, “Nonvolatile Semiconductor Memories: Technologies, Design, and Application,” C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, pp. 59.

[33] P. E. Cottrell, R. R. Troutman, T. H. Ning, “Hot-electron emission in n-channel IGFET's,” IEEE Journal of Solid-State Circuits, vol. 14, pp. 442-455, 1979.

[34] B. Eitan, D. Froham-Bentchkowsky, “Hot-Electron. Injection into the Oxyde in N-Channel MOS devices,” IEEE Transaction on Electron Devices., vol. 28, pp. 328-340, 1981.

[35] J. Bu, M. H. White, “Design considerations in scaled. SONOS nonvolatile memory devices,” Solid State Electronics., vol. 45, pp. 113-120, 2001.

[36] M. L. French, M. H. White, “Scaling of multidielectric nonvolatile SONOS

- 69 -

memory structures,” Solid-State Electron., vol. 37, pp. 1913-1923, 1994.

[37] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White, “Design and scaling of a SONOS Multidielectric device for nonvolatile memory applications,”

IEEE Trans. Comp. Pack. And Manu. Tech., part A, vol. 17, no. 3, pp. 390-397, 1994.

[38] Y. Wang, M. H. White, “An analytical retention model for SONOS nonvolatile memory devices in the excess electron state,” Solid-State Electron., vol.49, pp.97-107, 2005.

[39] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E.

Hasegawa, A. Ishitani, T. Okazawa, “A high capacitive-coupling ratio (HiCR) cell for 3 V-only 64 Mb and future flash memories,” in IEDM Tech. Dig., 1993, pp. 19-22.

[40] Z. Liu, C. Lee, V. Narayanan, G. Pei, E. C. Kan, “Metal nanocrystal

memories—part I: device design and fabrication,” IEEE Transaction on Electron Devices, vol. 49, no. 9, pp. 1606-1613, 2002.

[41] J. L. Moll, Physics of Semiconductors, McGraw-Hill, New York, 1964.

[42] S. M. Sze, Physics of Semiconductor Devices, p. 497-498, Wiley, New York , 1981. 81[43] C. Svensson, I. Lundstrom, “Trap-assisted charge injection in MNOS structures,”Journal of Applied Physics., vol. 44, pp. 4657-4663, 1973.

[44] Chan C. and Lien J. (1897) “Corner-field induced drain leakage in thin oxide MOSFETs”. IEDM Technical Digest, p.714.

[45] Chan T.Y., Chen J., Ko P.K. and Hu C. (1987) “The impact of gate-induced leakage current on MOSFET scaling”, IEDM Technical Digest, p.718.

[46] I. C. Chen, C. Kaya, J. Paterson, “Band-to-Band Tunneling Induced

- 70 -

Substrate Hot Electron (BBISHE) Injection: A New Programming Mechanism for Non-Volatile Memory. Devices,” in IEDM Technical Digest, pp. 263-270, 1989.

[47] Yakov Roizin, Micha Gutman, Efraim Aloni, Victor Kairys, Pavel Zisman,

“Retention Characteristic of micro FLASH Memory (Activation Energy of Traps in the ONO stack)”

[48] K. Kim, J. Choi, NVSMW, pp.9, 2006

[49] Y. Wang, M. H. White, “An analytical retention model for SONOS nonvolatile memory devices in the excess electron state,” Solid-State Electron., vol.49, pp.97-107, 2005.

[50] R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, “Introduction to Flash Memory,” In Proc. Of the IEEE, vol. 91, no. 4, pp. 489-502, 2003.

[51] P. Cappelletti, R. Bez, D. Cantarelli, L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling,” in IEDM Tech. Dig., 1994, pp. 291-294.

[52] T. Yamaguchi et al., IEDM Technical Digest, p.19, 2000.

[53] W. Zhu et al., IEDM Technical Digest, p.463, 2001.

[54] M. H. White, L. Yang, A. Purwar, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” IEEE Trans. Comp.

Packag. Manufact. Technol. A, vol. 20, pp. 190–195, Mar. 1997.

[55] G. D.Wilk, R. M.Wallace, and J. M. Anthony, “High-k gate dielectrics:

Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp.5243–5275, 2001.

[56] H. Wann, C. Hu, IEEE Electron Device Lett. 16 (1995 May) 491.

[57] M.H. White, D.A. Adams, B. Jiankang, IEEE Circuits Devices

- 71 -

Mag.16(2000 Jan) 22.

[58] U. Sharma, R. Moazzami, P. Tobin, Y. Okada, S. K. Cheng and J. Yeargain,

“Vertically Scaled, High Reliability EEPROM Devices with Ultra-thin Oxynitride Films Prepared by RTP in N20/02 Ambient,” IEEE IEDM, Tech.

Dig., 1992, pp. 461-464.

[59] H. Fukuda, M. Yasuda, T. Iwabuchi and S. Ohno, “Novel N2O-Oxynitridation Technology for Forming Highly Reliable EEPROM Tunnel Oxide Films,” IEEE Electron Device Lett., Vol. 12, 1991, pp. 587-589.

[60] B. C. Lin, K. M. Chang, C. H. Lai, K.Y. Hsieh and J. M. Yao, “Reoxidation Behavior of High-Nitrogen Oxynitride Films after O2 and N2O Treatment,” Jpn.

J. Appl. Phys., vol. 44, pp.2993-2994, 2005.

[61]J. Kim, S. T. Ahn, “Improvement of the tunnel oxide quality by a low thermal budget dual oxidation for flash memories,” IEEE Electron Device Letters, vol.18, no. 8, pp. 385-387, Aug. 1997.

[62] J.L. Wu, H.C. Chien, C.W. Liao, C.H. Kao, “Comparison of Electrical and Reliability Characteristics of Different Tunnel Oxides in SONOS Flash

Memory,” IEEE International Workshop on Memory Technology, Design, and Testing (MTDT’06),2006.

[63] Y.N. Tan, W.K. Chim, B.J. Cho, W.K. Choi, “Over-Erase phenomenon in SONOS-Type flash memory and its minimization using a Hafnium oxide charge storage layer,” IEEE Transactions on Electron Devices, vol.51, No.7, July 2004.

[64] Y.H. Lin, C.H. Chien, C.Y. Chang, T.F. Lei, “Annealing temperature effect on the performance of nonvolatile HfO2 Si-oxide-nitride-oxide-silicon-type flash memory,” J. Vac. Sci. Technol. A, Vol.24, No. 3, May/Jun 2006.

- 72 -

[65] H.A.R. Wegener, A.J. Lincoln, H.C. Pao, M.R. O’Connell, and R.E.

Oleksiak, The variable threshold transistor, a new electrically alterable, non-destructive read-only storage device,” IEEE IEDM Tech. Dig., Washington, D.C., 1967.

[66] T.Y.Chan, K.K.Young and C.Hu, “A true single-transistor oxide- nitride-oxide EEPROM device”. IEEE Electron Device Letters, vol.8, no.3, pp.93-95, 1987.

[67] M.K. Cho and D.M.Kim, “High performance SONOS memory cells free of drain turn-on and over-erase: compatibility issue with current flash technology”, IEEE Electron Device Letters, pp.399-401, Vol.21, No.8, 2000.

[68] I. Fijiwara, H.Aozasa, K.Nomoto, S.Tanaka and T.Kobayashi, “ High speed program/erase sub 100nm MONOS memory cell”, Proc. 18th Non-Volatile Semiconductor Memory Workshop, p. 75, 2001.

[69] H. Reisinger, M. Franosch, B. Hasler, and T. Bohm, Symp. on VLSI Tech.

Dig. , 9A-2, 113 (1997).

[70] C. Tung-Sheng, W. Kuo-Hong, C. Hsien, and K. Chi-Hsing, “Performance improvement of SONOS memory by bandgap engineering of charge-trappinglayer”, IEEE Electron Device Lett., vol. 25, no. 3, pp.205–207, Mar. 2004.

[71] Y. N. Tan, W. K. Chim, and B. J. Cho, W. K. Choi, “Over-Erase Phenomenon in SONOS-Type Flash Memory and its Minimization Using a Hafnium Oxide Charge Storage Layer”, IEEE Transations on Eelectron Devices, vol.51, no.7, July 2004.

[72] Min She, Hideki Takeuchi, and Tsu-Jae King, “Silicon-Nitride as a Tunnel

- 73 -

Dielectric for Improved SONOS-Type Flash Memory”, IEEE Electron Device Letters, vol. 24, no. 5, MAY 2003.

[73] Chang-Hyun Lee, Kyu-Charn Park, and Kinam Kim, “Charge-trapping memory cell of SiO2/SiN/high-k dielectric Al2O3 with TaN metal gate for suppressing backward-tunneling effect”, Applied Physics Letters 87, 073510 (2005)

[74] Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Yung-Chun Wu, and Ping-Hung Yeh, “Nonvolatile polycrystalline silicon thin-film-transistor memory with oxide/nitride/oxide stack gate dielectrics and nanowire channels”, Applied Physics Letters 90, 122111 (2007)

[75] Peiqi Xuan, Min She, Bruce Harteneck, Alex Liddle, Jefkey Bokor, and Tsu-Jae King, “FinFET SONOS Flash Memory for Embedded Applications”, IEEE IEDM 609-612 (2003).

[76] Tzu-Hsuan Hsu, Hang Ting Lue, Ya-Chin King, Jung-Yu Hsieh, Erh-Kun Lai, Kuang-Yeu Hsieh, and Chih-Yuan Lu, “A High-Performance Body-Tied FinFET Bandgap Engineered SONOS (BE-SONOS) for NAND-Type Flash Memory”, IEEE Electron Device Letters, vol. 28, no. 5, MAY 2007.

[77] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and Doug Buchanan, IEDM Tech. Dig., p.521 (1995)

[78] Yan Ny Tan, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.

53, NO. 4, APRIL 2006

[79] Chao Sung Lai, APPLIED PHYSICS LETTERS 86, 222905 2005 [80] Chih-Ren Hsieh, APPLIED PHYSICS LETTERS 96, 022905 2010

- 74 -

個人簡歷

姓名:林文新 性別:男

生日:民國75 年5 月26 日 籍貫:台灣台北縣

學歷:國立清華大學生醫工程與環境科學系 (93.9-97.6) 國立交通大學電子工程研究所 (97.9-99.7)

碩士論文題目:

氟應用於二氧化鉿儲存層非揮發性記憶體之研究

Study on fluorine applied to nonvolatile memory

using HfO

2

as charge trapping layer

相關文件