• 沒有找到結果。

Chapter 5 Conclusions

5.1 The Figure-Of-Merit (FOM)

Table 5-1 shows the comparisons of sigma-delta modulators for the audio applications. The range of paper survey is below 1mW and above 60dB of SNR. It is difficulty to compare power efficiency. In general, the figure-of-merit (FOM) is a criterion for the power efficiency of sigma-delta modulators. The FOM is defined as

P DR f kT FOM 4B

= (5.1)

where k is Boltzmann’s constant, T is the absolute temperature, fB is the signal bandwidth, and P is the power consumption. Although the signal bandwidth and power consumption are considered in FOM, the supply voltage is not taken into account [29]. To make a fair comparison, Table 5-2 shows the FOM comparisons for the sigma-delta modulators in Table 5-1. This work achieves the highest FOM except [29] with 90nm process. The area is not included into FOM and it is difficulty to compare due to different capacitor processes (poly-to-poly, metal-to-metal, and so on) and structures. In general, the area is dominated by capacitors for sigma-delta

Table 5-1 The comparison of sigma-delta modulator for the audio application.

Name & Year VDD SNDR SNR DR BW Power Process

Tille, 2004 [28] 1.8V 72dB 77dB - 8kHz 1mW 0.25µ m CMOS Yao, 2004 [29] 1.0V 81dB 85dB 88dB 20kHz 140µ W 90nm CMOS Nielsen,2004 [30] 1.8V 62dB - 67dB 3.6kHz 108µ W 0.35 µ m CMOS Safarian, 2003 [31] 2.5V - 83dB 86dB 4kHz 125µ W 0.25 µ m CMOS Gerfers, 2003 [32] 1.5V 70dB 73dB 80dB 25kHz 135µ W 0.5 µ m CMOS

Hu, 2003 [33] 0.9V - 74dB - 10kHz 38µ W 0.18 µ m CMOS

Samid, 2003 [34] 1.5V 60dB 62dB - 50kHz 50µ W 0.5 µ m CMOS Sauerbrey, 2002 [35] 0.7V 67dB 70dB 75dB 8kHz 80µ W 0.18 µ m CMOS Qunying, 2001 [36]* 1.2V 63dB 75dB 75dB 3.4kHz 38µ W 0.35 µ m CMOS Gerfers, 2001 [37] 1.5V 65dB - 75dB 25kHz 230µ W 0.5 µ m CMOS Dessouky, 2000 [38] 1.0V 85dB 87dB 88dB 25kHz 950µ W 0.35 µ m CMOS Peluso, 1998 [39] 0.9V 62dB 76dB 77dB 16kHz 40µ W 0.5 µ m CMOS Peluso, 1997 [19] 1.5V 66dB - 74dB 3.4kHz 100µ W 0.7 µ m CMOS vanderZwan, 1996 [40] 2.2V - - 80dB 3.4kHz 200µ W 0.5 µ m CMOS This Work 1.0V 69dB 75.7dB 76.6dB 20kHz 40µ W 0.18 µ m CMOS

* Only simulation results.

Table 5-2 The FOM comparison.

Name & Year VDD DR BW Power Area Process FOM

Yao, 2004 [29] 1.0V 88dB 20kHz 140µW 0.18mm 2 90nm CMOS 1493e-6 Gerfers, 2003 [32] 1.5V 80dB 25kHz 135µW - 0.5µ m CMOS 306.8e-6 Sauerbrey, 2002 [35] 0.7V 75dB 8kHz 80µW 0.082mm2 0.18µ m CMOS 52.39e-6 Qunying, 2001 [36]* 1.2V 75dB 3.4kHz 38µW - 0.35µ m CMOS 46.88e-6 Gerfers, 2001 [37] 1.5V 75dB 25kHz 230µW 1.2mm 2 0.5µ m CMOS 56.95e-6 Dessouky, 2000 [38] 1.0V 88dB 25kHz 950µW 0.63mm 2 0.35µ m CMOS 275.1e-6 Peluso, 1998 [39] 0.9V 77dB 16kHz 40µW 0.85mm 2 0.5µ m CMOS 332.2e-6 Peluso, 1997 [19] 1.5V 74dB 3.4kHz 100µW 0.5mm 2 0.7µ m CMOS 14.15e-6 This Work 1.0V 76.6dB 20kHz 40µW 0.54mm2 0.18µ m CMOS 378.7e-6

* Only simulation results.

5.2 Conclusions

The sigma-delta modulators have been proposed to achieve the high resolution A/D converters. This thesis presents the simple switched-capacitor structure with inverters to implement a 40µW third-order sigma-delta modulator with single-loop architecture. In Table 5-1, almost all the lower power modulators are single-loop due to less circuit blocks and component matching requirements. Also, the switched-capacitor circuits provide more accurate integrators and higher power efficiency. Moreover, the inverter opamp consumes less chip area and power consumption than the general opamp structures. Therefore, this thesis achieves a peak SNDR of 69.01dB, SNR of 75.74dB, and DR of 76.61dB at a sampling rate 2M Hz and a signal bandwidth of 20k Hz under single 1.0V supply voltage.

However, there are problems in this architecture, offset and clock feed-through due to inverter opamp and single ended integrators. The clock feed-through noise is still lager in proposed single-end integrators with dummy switches than differential-end integrators.

Although the SNDR in the proposed sigma-delta modulator is only 69.01dB, it is high enough for the hearing aids applications [21]. Only 40µW power consumption extends battery life longer. The chip area is also reduced by using inverter opamp.

Therefore, the proposed sigma-delta modulator is suitable for hearing aids and other similar audio applications.

Bibliography

[1] D. Johns and K.W. Martin, Analog Integrated Circuits, Wiley, New York, 1997.

[2] http://www.nmcdhh.org/

[3] F. Serra-Graells, L. Gomez, J.L. Huertas, “A true-1-V 300-µW CMOS-subthreshold log-domain hearing-aid-on-chip,” Solid-State Circuits, IEEE Journal of Volume 39, Issue 8, Aug. 2004 Page(s):1271 - 1281

[4] D.F. Gata, W. Sjursen, J.R. Hochschild, J.W. Fattaruso, L. Fang, G.R. Iannelli, Z.

Jiang, C.M. Branch, J.A. Holmes, M.L. Skorcz, E.M. Petilli, S. Chen, G.

Wakeman, D.A. Preves, W.A. Severin, “A 1.1-V 270-/spl mu/A mixed-signal hearing aid chip,” Solid-State Circuits, IEEE Journal of Volume 37, Issue 12, Dec. 2002 Page(s):1670 – 1678

[5] Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, Oxford, New York, 2002.

[6] S. Rabii; B. A. Wooley; “The Design of Low-Voltage, Low-Power Sigma-Delta Modulator,” Kluwer Academic Publisher, 1999.

[7] Richard Schreier and Gabor C. Temes, Understanding Delta-Sigma Data Converters, Wiley, New York, 2005.

[8] W.L. Lee, “A novel higher order interpolative modulator topology for high resolution oversampling A/D converters,” Master’s Thesis, Massachusetts Institute of Technology Cambridge, MA. June 1987.

[9] K.C.H. Chao, S. Nadeem, W.L. Lee, and C.G. Sodini, “A higher order topology for interpolative modulators for oversampling A/D conversion,” IEEE Transactions on Circuits and Systems, vol. 37, pp.309-318, March 1990.

[10] Steven R. Norsworthy, Richard Schreier and Gabor C. Temes, Delta-Sigma Data Converters – Theory, Design, and Simulation, the Institute of Electrical and Electronics Engineers, New York, 1997.

[11] D. Linden, Handbook of Batteries, McGraw-Hill, 1994.

[12] Vincenzo Peluso, Michiel Steyaert, and Willy Sansen, Design of Low-Voltage Low-Power CMOS Delta-Sigma A/D Converters, Kluwer Academic Publishers, 1999.

[13] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGRAW-HILL International Edition, 2001.

[14] Shahriar Rabii and Bruce A. Wooley, The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, Kluwer Academic Publishers, 1999.

[15] R. Castello and P. Gray, “Performance limitations in switched-capacitor filters,”

IEEE Trans. on Circuits and Systems II, vol. CAS-32, pp. 865-876, September 1985.

[16] A. Baschirotto, ”A low-voltage sample-and-hold circuit in standard CMOS technology operating at 40 ms/s,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on Volume 48, Issue 4, April 2001 Page(s):394 - 399

[17] S. Rabii, B.A. Wooley, “A 1.8-V digital-audio sigma-delta modulator in 0.8-µm CMOS.” Solid-State Circuits, IEEE Journal of Volume 32, Issue 6, June 1997 Page(s):783 - 796

[18] M. Dessouky, A. Kaiser, ”Very low-voltage digital-audio Σ∆ modulator with 88-dB dynamic range using local switch bootstrapping,” Solid-State Circuits, IEEE Journal of Volume 36, Issue 3, March 2001 Page(s):349 - 355

[19] V. Peluso, M.S.J. Steyaert, W. Sansen, “A 1.5-V-100-µW ∆Σ modulator with

12-b dynamic range using the switched-opamp technique,” Solid-State Circuits, IEEE Journal of Volume 32, Issue 7, July 1997 Page(s):943 - 952

[20] A. Marques, V. Peluso, M.S. Steyaert, W.M. Sansen, “Optimal parameters for ∆Σ modulator topologies,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs, IEEE Transactions on] Volume 45, Issue 9, Sept. 1998 Page(s):1232 - 1241

[21] H. Neuteboom, B.M.J. Kup, M. Janssens, “A DSP-based hearing instrument IC,”

Solid-State Circuits, IEEE Journal of Volume 32, Issue 11, Nov. 1997 Page(s):1790 - 1806

[22] R. Schreier, “An empirical study of high-order single-bit delta-sigma modul,”

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on [see also Circuits and Systems II: Express Briefs, IEEE Transactions on] Volume 40, Issue 8, Aug. 1993 Page(s):461 - 466

[23] Lei Wang; S.H.K. Embabi, “Low-voltage high-speed switched-capacitor circuits without voltage bootstrapper,” Solid-State Circuits, IEEE Journal of Volume 38, Issue 8, Aug. 2003 Page(s):1411 - 1415

[24] C.C. Enz, G.C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of the IEEE Volume 84, Issue 11, Nov. 1996 Page(s):1584 - 1614

[25] E. Bidari, M. Keskin, F. Maloberti, U. Moon, J. Steensgaard, G.C. Temes,

"Low-voltage switched-capacitor circuits,” Circuits and Systems, 1999.ISCAS '99. Proceedings of the 1999 IEEE International Symposium on Volume 2, 30 May-2 June 1999 Page(s):49 - 52 vol.2

[26] Jen-Shiun Chiang; Chih-Wei Hu “The design of a delta-sigma modulator with low clock feedthrough noise, op-amp gain compensation, and more correctly transferring charges between capacitors,” Circuits and Systems, 1997. ISCAS '97., Proceedings of 1997 IEEE International Symposium on Volume 3, 9-12 June 1997 Page(s):2016 - 2019 vol.3

[27] National Semiconductor, “LM117/LM317A/LM317 3-Terminal Adjustable Regulator Data Sheet,” National Semiconductor, Inc., 1997.

[28] T. Tille, J. Sauerbrey, M. Mauthe, D. Schmitt-Landsiedel, “Design of low-voltage MOSFET-only Σ∆ modulators in standard digital CMOS technology,” Circuits and Systems I: Regular Papers, IEEE Transactions on [see also Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on] Volume 51, Issue 1, Jan 2004 Page(s):96 - 109

[29] Libin Yao; M.S.J. Steyaert, W. Sansen, “A 1-V 140-µW 88-dB audio sigma-delta modulator in 90-nm CMOS,” Solid-State Circuits, IEEE Journal of Volume 39, Issue 11, Nov. 2004 Page(s):1809 - 1818

[30] J.H. Nielsen, E. Bruun, ”A low-power 10-bit continuous-time CMOS Σ∆ A/D converter,” Circuits and Systems, 2004. ISCAS '04. Proceedings of the 2004 International Symposium on Volume 1, 23-26 May 2004 Page(s):I - 417-20 Vol.1

[31] A.Q. Safarian, F. Sahandi, S.M. Atarodi, ”A new low-power sigma-delta modulator with the reduced number of op-amps for speech band applications,”

Circuits and Systems, 2003. ISCAS '03. Proceedings of the 2003 International Symposium on Volume 1, 25-28 May 2003 Page(s):I-1033 - I-1036 vol.1

[32] F. Gerfers, M. Ortmanns, Y. Manoli, ”A 1.5-V 12-bit power-efficient continuous-time third-order Σ∆ modulator,” Solid-State Circuits, IEEE Journal of

Volume 38, Issue 8, Aug. 2003 Page(s):1343 - 1352

[33] Yamu Hu; Zhijun Lu; M. Sawan, ”A low-voltage 38µW sigma-delta modulator dedicated to wireless signal recording applications,” Circuits and Systems, 2003.

ISCAS '03. Proceedings of the 2003 International Symposium on Volume 1, 25-28 May 2003 Page(s):I-1073 - I-1076 vol.1

[34] L. Samid, Y. Manoli, ”An ultra low power continuous-time sigma delta modulator,” Electronics, Circuits and Systems, 2003. ICECS 2003. Proceedings of the 2003 10th IEEE International Conference on Volume 2, 14-17 Dec. 2003 Page(s):782 - 785 Vol.2

[35] J. Sauerbrey, T. Tille, D. Schmitt-Landsiedel, R. Thewes, ”A 0.7-V MOSFET-only switched-opamp Σ∆ modulator in standard digital CMOS technology,” Solid-State Circuits, IEEE Journal of Volume 37, Issue 12, Dec.

2002 Page(s):1662 - 1669

[36] Li. Qunying, J. Van der Spiegel, K.R. Laker, “A 1.2 V, 38 µW second-order ∆Σ modulator with signal adaptive control architecture,” Low Power/Low Voltage Mixed-Signal Circuits and Systems, 2001. (DCAS-01). Proceedings of the IEEE 2nd Dallas CAS Workshop on 26 March 2001 Page(s):P23 - P26

[37] F. Gerfers, Y. Manoli, “A design strategy for low-voltage low-power continuous-time Σ∆ A/D converters,” Design, Automation and Test in Europe, 2001. Conference and Exhibition 2001. Proceedings 13-16 March 2001 Page(s):361 - 368

[38] M. Dessouky, A. Kaiser, “A 1 V 1 mW digital-audio Σ∆ modulator with 88 dB dynamic range using local switch bootstrapping,” Custom Integrated Circuits Conference, 2000. CICC. Proceedings of the IEEE 2000 21-24 May 2000 Page(s):13 - 16

[39] V. Peluso, P. Vancorenland, A.M. Marques, M.S.J Steyaert, W. Sansen, “A 900-mV low-power Σ∆ A/D converter with 77-dB dynamic range,” Solid-State Circuits, IEEE Journal of Volume 33, Issue 12, Dec. 1998 Page(s):1887 - 1897 [40] E.J. vanderZwan, E.C. Dijkmans, “A 0.2-mW CMOS Σ∆ modulator for speech

coding with 80 dB dynamic range,” Solid-State Circuits, IEEE Journal of Volume 31, Issue 12, Dec. 1996 Page(s):1873 - 1880

相關文件