• 沒有找到結果。

CONCLUSIONS AND FUTURE WORK

5.2 FUTURE WORK

The simulation and measurement results have been shown that the proposed ILFT can achieve high output power with low power consumption. However, the

164

locking range of ILFT still can no be larger than 10-GHz even if the quality factor of LC-tank is decreased. The main reason is that the large parasitic capacitances between frequency pre-generator stage and ILO stage. The generated third-order harmonic signal is leaked to substrate. Thus, the locking range expressed in (2.15) should be considered the effect. To achieve larger locking range, the transformer-based ILFT will be designed to increase the injection current.

In the 60-GHz PLL design, the output power is too small to drive mixer directly.

Moreover, the divide-ratio is not programmable and reference clock is higher than the commercial crystal oscillator. By using 130-nm CMOS technology or more advanced technology, the driving capability is increased to generate the 60-GHz signal with large output amplitude. The prescaler, program counter, and swallow counter will be used for channel selection. The increase of divide-ratio to reduce the reference frequency will be designed for system integration

Finally, by careful whole chip EM simulation, the operational frequency will be moved to 60 GHz in the modified receiver chip. The I- and Q-channel outputs with small amplitude and phase imbalances will be redesigned by adding a ring oscillator between I/Q ILFTs or by careful layout plan in the future.

Therefore, a low-power, high-integration, high-performance single chip transceiver for 60-GHz applications will be designed and tape-out in the future.

165

REFERENCES

[1] B. A. Floyd, S. K. Reynolds, U. R. Pfeiffer, T. Zwick, T. Beukema, and B.

Gaucher, “SiGe bipolar transceiver circuits operating at 60 GHz,” IEEE J.

Solid-State Circuits, vol. 40, no. 1, pp. 156–167, Jan. 2005.

[2] U. R. Pfeiffer, J. Grzyb, D. Liu, B. Gaucher, T. Beukema, B. A. Floyd, and S. K.

Reynold, “A chip-scale packaging technology for 60-GHz wireless chipsets,”

IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3387–3397, Aug. 2006.

[3] S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, C.

Fager, M. Ferndahl, B. Hansson, A. Alping, and P. Hallbjorner, “60 GHz single-chip front-end MMICs and systems for multi-Gb/s wireless communication,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1143–1157, May.

2007.

[4] N. Yasutake, K. Ohuchi, M. Fujiwara, K. Adachi, A. Hokarono, K. Kojima, N.

Aoki, H. Suto, T. Watanahe, T. Morooka, H. Miruno, S. Magoshi, T. Shimizu, S.

Mori, H. Oguma, T. Sasaki, M. Ohmura, K. Miyano, H. Yamadd, H. Tomita, D.

Matsushita, K. Muraoka, S. Inaha, M. Tdkayanagi, K. Ishimaru, and H. Ishiuchi,

“A hp22 nm node low operating power (LOP) technology with sub-10 nm gate length planar bulk CMOS devices,” in VLSI Technology Symp. Tech. Dig., Jun.

2004, pp. 84–85.

[5] C. H. Doan, S. Emami, D. A. Sobel, A. M. Niknejad, and R. W. Brodersen,

“Design considerations for 60 GHz CMOS radios,” IEEE Communications Magazine, vol. 42, no. 12, pp. 132–140, Dec. 2004.

[6] H. Wang, “A 50GHz VCO in 0.25μm CMOS,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2001, pp. 372–373.

166

[7] M. Tiebout, H.-D. Wohlmuth, and W. Simburger, “A 1V 51GHz fully-integrated VCO in 0.12μm CMOS,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig.

Tech. Papers, Feb. 2002, pp. 300–301.

[8] D. Haung, W. Hant, N.-Y. Wang, T. W. Ku, Q. Gu, R. Wong, and M.-C. F. Chang,

“A 60GHz CMOS VCO using on-chip resonator with embedded artificial dielectric for size loss and noise reduction,” in IEEE Int. Solid State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 1218–1227.

[9] C. Cao and K. K. O., “Millimeter-wave voltage-controlled oscillators in 0.13-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1297–1304, Jun. 2006.

[10] K. Ishibashi, M. Motoyashi, N. Kobayashi, and M. Fujishima, “76GHz CMOS voltage-controlled oscillator with 7% frequency tuning range,” in VLSI Circuits Symp. Tech. Dig., Jun. 2007, pp. 176–177

[11] R. Murji and M. J. Deen, “Design issue of a low power wideband frequency doubler implementation in 0.18 μm CMOS,” Analog Integrated Circuits and Signal Processing, vol. 53, pp. 53–62, 2007.

[12] K. Yamamoto, “A 1.8-V operation 5-GHz-band CMOS frequency doubler using current-reuse circuit design technique,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1288–1295, Jun. 2005.

[13] Y. Zheng and C. E. Saavedra, “A broadband CMOS frequency tripler using a third-harmonic enhanced technique,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2197–2203, Oct. 2007.

[14] B. Park, S. Lee, S. Hong, and S. Choi, “A 22 GHz cascode CMOS VCO using frequency doubler,” Microw. Optical Technology Lett., vol. 49, no. 11, pp.

2870–2873, Nov. 2007.

[15] F. Ellinger and H. Jackel, “Ultracompact SOI CMOS frequency doubler for low

167

power application at 26.5–28.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol.

14, no. 2, pp. 53–55, Feb. 2004.

[16] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “K- and Q-bands CMOS frequency sources with X-band quadrature VCO,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2789–2800, Sept. 2005.

[17] M. Ferndahl, B. M. Motlagh, and H. Zirath, “40 and 60 GHz frequency doubler in 90-nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp.

831–834.

[18] S. Emami, C. H. Doan, A. M. Niknejad1, and R. W. Brodersen, “A highly integrated 60GHz CMOS front-end receiver,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 190–191.

[19] P.-H. Chen, M.-C. Chen, C.-Y. Wu, “An integrated 60-GHz front-end receiver with a frequency tripler using 0.13-μm CMOS technology,” in IEEE Int.

Electronics, Circuits, and Systems Conf. Tech. Dig., Dec. 2007, pp. 829–832.

[20] X. Yi, Y. Su, Z. Zhu, and Z. Hong, “A 2.4GHz CMOS injection-locked frequency doubler,” Chinese J. Semiconductors, vol. 26, no. 5, pp. 1049–1053, May 2005.

[21] L. Zhang, D. Karasiewicz, B. Cifctioglu, and H. Wu, “A 1.6-to-3.2/4.8 GHz dual-modulus injection-locked frequency multiplier in 0.18μm digital CMOS,” in IEEE Radio Freq. Integr. Circuits (RFIC) Symp. Dig., Jun. 2008, pp. 427–430.

[22] K. Takano, M. Motoyashi, and M. Fujishima, “4.5GHz CMOS frequency multiplier with subharmonic pulse-injection locking,” in IEEE Asian Solid State Circuits Conf. (ASSCC) Dig. Tech. Papers, Nov. 2007, pp. 336–337.

[23] W. L. Chan, J. R. Long, and J. J. Pekarik, “A 56-to-65GHz injection-locked frequency tripler with quadrature outputa in 90nm CMOS,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 480–481.

[24] F.-H. Huang and Y.-J. Chan, “A V-band CMOS injection-locked using

168

fundamental harmonic injection oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 12, pp. 882–884, Dec. 2007.

[25] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol.56, no. 8, pp. 1869–1878, Aug. 2008.

[26] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, issue 10, pp. 1380–1385, Oct. 1973.

[27] T. Tokumitsu, K. Kamogawa, I. Toyoda, and M. Aikawa, “A novel injection-locked oscillator MMIC with combined ultrawide-band active combiner divider and amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 12, pp.

2572–25787, May 1994.

[28] C. Cao, Y. Ding, and K. K. O., “A 50-GHz phase-locked loop in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1649–1656, Aug. 2007.

[29] C. Lee and S. I. Liu, “A 58-to-60.4GHz frequency synthesizer in 90nm CMOS,”

in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp.

196–197.

[30] H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara, and R. Fujimoto,

“A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS,” in Proc. Eur. Solid State Circuits Conf. (ESSCIRC), Sept. 2007, pp.472–475.

[31] J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414–1426, Jun.

2008.

[32] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high frequency low power frequency divider,” IEEE J. Solid State Circuits, vol. 39, no.

7, pp. 1170–1174, Jul. 2004.

[33] M.-C. Chuang, J.-J. Kuo, C.-H. Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw. Wireless

169

Compon. Lett., vol. 18, no. 5, pp. 344–346, May 2008.

[34] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range,” in Proc. Eur. Solid State Circuits Conf. (ESSCIRC), Sept. 2004, pp.

135–138.

[35] F.-H. Huang and Y.-J. Chan, “V-band CMOS differential-type injection locked frequency dividers,” in IEEE Int. VLSI Design, Automation, and Test Symp. Tech.

Dig., Apr. 2006, 2 pp.

[36] Q. Gu, Z. Xu, and M.-C. F. Chang, “A wide locking range and low power V-band frequency divider in 90nm CMOS”, in VLSI Circuits Symp. Tech. Dig., Jun. 2007, pp. 266–267.

[37] Q. Gu, Z. Xu, D. Huang, T. LaRocca, N.-Y. Wang, W. Hant, and M.-C. F. Chang,

“A low power V-band CMOS frequency divider with wide locking range and accurate quadrature output phases”, IEEE J. Solid-State Circuits, vol. 43, no. 4, pp.

991–998, Apr. 2008.

[38] K. Yamamoto and M. Fujishima, “70GHz CMOS harmonic injection-locked dicvider,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb.

2006, pp. 2472–2481.

[39] C.-H. Wang, C.-C. Chen, M.-F. Lei, M.-C. Chuang, and H. Wang, “A 66–72 GHz divide-by-3 injection-locked frequency divider in 0.13-μm CMOS technology,” in IEEE Asian Solid State Circuits Conf. (ASSCC) Dig. Tech. Papers, Nov. 2007, pp.

344–347.

[40] R. L. Miller, “Fractional-frequency generators utilizing regenerative modulation,” in Proc. of the Institute of Radio Engineers, vol. 27, issue 7, pp.

446–457, Jul. 1939.

[41] T. Shibasaki, H. Tamura, K. Kanda, and H. Yamaguchi, “A 20-GHz injection-locked LC divider with a 25-% locking range,” in VLSI Circuits Symp.

170

Tech. Dig., Jun. 2006, pp. 170–171.

[42] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594–601, Apr. 2004.

[43] A. Bonfanti, A. Tedesco, C. Samori, and A. L. Lacaita, “A 15-GHz broad-band

÷2 frequency divider in 0.13-μm CMOS for quadrature generation,” IEEE Microw.

Wireless Compon. Lett., vol. 15, no. 11, pp. 724–726, Nov. 2005.

[44] Y. Ding and K. K. O., “A low-power 17-GHz 256/257 dual-modulus prescaler fabricated in a 130-nm CMOS process,” in IEEE Radio Freq. Integr. Circuits (RFIC) Symp. Dig., Jun. 2005, pp. 465–468.

[45] H.-D. Wohlmuth, D. Kehrer, and W. Simburger, “A high sensitivity static 2:1 frequency divider up to 19 GHz in 120 nm CMOS,” in IEEE Radio Freq. Integr.

Circuits (RFIC) Symp. Dig., Jun. 2002, pp. 231–234.

[46] C. Cao and K. K. O., “A power efficient 26-GHz 32:1 static frequency divider in 130-nm bulk CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp.

721–723, Nov. 2005.

[47] H.-D. Wohlmuth, D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” in Proc. Eur. Solid State Circuits Conf. (ESSCIRC), Sept. 2002, pp. 823–826.

[48] H. M. Cheema, R. Mahmoudi, M.A.T. Sanduleanu, and A. van Roermund, “A Ka band, static, MCML frequency divider, in standard 90nm-CMOS LP for 60 GHz applications,” in IEEE Radio Freq. Integr. Circuits (RFIC) Symp. Dig., Jun. 2007, pp. 541–544.

[49] T.-C. Lee, H.-C. Lee, K.-J. Hsiao, Y.-C. Huang, and G.-J. Chen, “A 40-GHz distributed-load static frequency divider,” in IEEE Asian Solid State Circuits Conf.

(ASSCC) Dig. Tech. Papers, Nov. 2005, pp. 205–208.

[50] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “A 40 GHz power efficient static

171

CML frequency divider in 0.13-μm CMOS technology for high speed millimeter-wave wireless systems,” in IEEE Int, Circuits and Systems for Communication Conf. Tech. Dig., May. 2008, pp. 812–815.

[51] K.-L. J. Wong, A. Rylyakov, and C.-K. K. Yang, “A broadband 44-GHz frequency divider in 90-nm CMOS,” in IEEE Compound Semiconductor integrated Circuit Symp. Dig., Nov. 2005, pp. 196–199.

[52] J.-Y. Chang and S.-I. Liu, “A 4-54GHz static frequency divider with back-gate coupling,” in IEEE Int. VLSI Design, Automation, and Test Symp. Dig., Apr. 2007, 4 pp.

[53] K. Kamogawa, T. Tokumitsu, and M. Aikawa, “Injection-locked oscillator chain:

a possible solution to millimeter-wave MMIC synthesizers,” IEEE Trans. Microw.

Theory Tech., vol. 45, no. 9, pp. 1578–1584, Sept. 1997.

[54] G. Ritzberger, J. Bock, and A. L. Scholtz, “45 GHz highly integrated phase-locked loop frequency synthesizer in SiGe bipolar technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, pp. 831–834.

[55] S. K. Reynolds, B. A. Floyd, U. R. Pfeiffer, T. Beukema, J. Grzyb, C. Haymes, B.

Gaucher, and M. Soyuer, “A silicon 60-GHz receiver and transmitter chipset for broadband communications,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp.

2820–2831, Dec. 2006.

[56] B. Afshar, Y. Wang, and A. M. Niknejad, “A robust 24mW 60GHz receiver in 90nm standard CMOS,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech.

Papers, Feb. 2008, pp. 182–183.

[57] B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 17–22, Jan. 2006.

[58] T. Mitomo, R. Fujimoto, N. Ono, R. Tachibana, H. Hoshino, Y. Yioshihara, Y.

Tsutsumi, and I. Seto, “A 60GHz CMOS receiver front-end with frequency

172

synthesizer,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 1030–1037, Apr.

2008.

[59] M. Tanomura, Y. Hamada, S. Kishimoto, M. Ito, N. Orihashi, K. Maruhashi, and H. Shimawaki, “TX and RX front-ends for 60GHz band in 90nm standard bulk CMOS,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb.

2008, pp. 558–559.

[60] D. Alldred, B. Cousins, S. P. Voinigescu, “A 1.2V, 60-GHz radio receiver with on-chip transformers and inductors in 90-nm CMOS,” in IEEE Compound Semiconductor Integrated Circuit Symp. Tech. Dig., Nov. 2006, pp. 51–54

[61] B. Razavi, “A millimeter-wave CMOS heterodyne receiver with on-chip LO and divider,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 477–485, Feb. 2008.

[62] C.-S. Wang, J.-W. Huang, S.-H. Wen, S.-H. Yeh, and C.-K. Wang, “A CMOS RF front-end with on-chip antenna for V-band broadband wireless communications,” in Proc. Eur. Solid State Circuits Conf. (ESSCIRC), Sept. 2007, pp. 143–146.

[63] A. Parsa and B. Razavi, “A 60GHz CMOS receiver using a 30GHz LO,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2008, pp. 190–191.

[64] S. Pinel, S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, and J. Laskar, “A 90nm CMOS 60GHz radio,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig.

Tech. Papers, Feb. 2008, pp. 130–131.

[65] B. Razavi, ”Design considerations for direct-conversion receivers,” IEEE Trans.

Circuits Syst. Part II, vol. 44, pp. 428-435, June 1997.

[66] M.-C. Chen, Y. Ding, and C.-Y. Wu, “A 5-GHz CMOS direct-conversion receiver with novel DC offset compensation circuit,” in Proc. of the Regional Inter-University Postgraduate Electrical and Electronics Engineering Conf. , July, 2006, 4 pp.

173

[67] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers ,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.

[68] S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015–1027, Jun. 2003.

[69] X. Zhang, X. Zhou, and A. S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 5, pp. 895–902, May 1992.

[70] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection-locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1425–1433, Sept. 2004.

[71] S. A. Maas, “Active frequency multipliers,” in Nonlinear microwave and RF circuits, 2nd ed., Norwood, MA: Artech House, 2003, ch. 10, sec. 2, pp. 477–490.

[72] H.-H. Hsieh and L.-H. Lu, “A low-phase-noise K-band CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 10, pp. 552–554, Oct. 2006.

[73] D. Ozis, N. M. Neihart, and D. J. Allstot, “Differential VCO and passive frequency doubler in 0.18μm CMOS for 24GHz applications,” in IEEE Radio Freq. Integr. Circuits (RFIC) Symp. Dig., Jun. 2006, 4 pp.

[74] C.-M. Hung, L. Shi, and K. K. O. “A 25.9-GHz voltage-controlled oscillator fabricated in a CMOS process,” in VLSI Circuits Symp. Tech. Dig., Jun. 2000, pp.

100–101.

[75] F. M. Gardner, “Charge-pump phase-lock loops,” IEEE Trans Communication, vol. 28, no. 11, pp. 1849–1858, Nov. 1980.

[76] A. Ismail, A. A. Abidi, “CMOS differential LC oscillator with suppressed up-converted flicker noise,” in IEEE Int. Solid State Circuits Conf. (ISSCC) Dig.

Tech. Papers, Feb. 2003, pp. 98–99.

174

[77] M. Mizuno, M. Yamashina, K. Furuta, H. Igura, H. Abiko, K. Okabe, A. Ono, and H. Yamada, “A GHz MOS adaptive pipeline technique using MOS current-mode logic,” IEEE J. Solid-State Circuits, vol. 31, no. 6, pp. 784–791, Jun.

1996.

[78] K. Kim, K. Lee, Y. Moon, D.-K. Jeong, Y. Choi, and H. K. Lim, “A 960-Mb/s/pin interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 691–700, May. 1997.

[79] J. Alvarez, H. Sanchez, and G. Gerosa, “A wide-band low-voltage PLL for PowerPC microprocessors,” IEEE J. Solid-State Circuits, vol. 30, no. 4, pp.

383–391, Apr. 1995.

[80] C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 35, no. 5, pp. 788–794, May 2000.

[81] G. C. T. Leung and H. C. Howard, “A 1-V 5.2-GHz CMOS synthesizer for WLAN applications,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1873–1882, Nov. 2004.

[82] A. Ravi, G. Banerjee, R. E. Bishop, B. A. Bloechel, L. R. Carley, and K.

Soumyanath, “10 GHz, 20 mW, fast locking, adaptive gain PLLs with on-chip frequency calibration for agile frequency synthesis in a 0.18 um digital CMOS process,” in VLSI Circuits Symp. Tech. Dig., Jun. 2003, pp. 181–184.

[83] T.-H. Lin and Y.-J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340–349, Feb. 2007.

[84] D.-J. Yang and K. K. O., “A 14-GHz 256/257 dual-modulus prescaler with secondary feedback and its application to a monolithic CMOS 10.4-GHz phase-locked loop,” IEEE Trans. Microw. Theory Tech,, vol. 52, no. 2, pp.

175

461–468, Feb. 2004.

[85] N. Pavlovic, J. Gosselin, K. Mistry, and D. Leenaerts, “A 10 GHz frequency synthesiser for 802.11a in 0.18μm CMOS,” in Proc. Eur. Solid State Circuits Conf.

(ESSCIRC), Sept. 2004, pp. 367–370.

[86] M. Tiebout, C. Kienmayer, R. Thuringer, C. Sandner, H. D. Wohlmuth, M. Berry, and A. L. Scholtz, “17 GHz transceiver design in 0.13 μm CMOS,” in IEEE Radio Freq. Integr. Circuits (RFIC) Symp. Dig., Jun. 2005, pp. 101–104.

[87] Y.-H. Peng and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 44–51, Jan. 2007.

[88] Y.-H. Peng and L.-H. Lu, “A Ku-band frequency synthesizer in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 256–258, Apr. 2007.

[89] Y. Ding and K. K. O., “A 21-GHz 8-Modulus Prescaler and a 20-GHz Phase-Locked Loop Fabricated in 130-nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1240–1249, Jun. 2007.

[90] A. W. L. Ng, G. C. T. Leung, K.-C. Kwok, L. L. K. Leung, and H. C. Howard, “A 1-V 24-GHz 17.5-mW phase-locked loop in a 0.18-μm CMOS process,” IEEE J.

Solid-State Circuits, vol. 39, no. 11, pp. 1873–1882, Nov. 2004.

[91] H. Shang, J. W. M. Rogers, and J. Chiu, “A fully differential 24GHz transmit PLL in a 0.13μm CMOS technology,” in Proc. of the IEEE North-East Workshop on Circuits and Systems, Jun. 2008, pp. 45–48.

[92] B. Razavi, “Basic concepts in RF design,” in RF Microelectronics, 1st ed., Upper Saddle River, NJ: Prentice Hall PTR, 1998, ch. 2, sec. 4, pp. 11–53.

[93] A. M. Niknejad and H. Hashemi, “Introduction to mm-wave silicon devices, circuits, and systems” in mm-wave Silicon Technology 60GHz and Beyond, 1st ed.,

176

New York, NY: Springer Science+Business Media, LLC, 2008, ch. 1, sec. 4, pp.

12–17.

[94] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier”, IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.

[95] S. Emami, C. H. Doan, A. M. Niknejad, and R. W. Brodersen, “A 60-GHz down-converting CMOS single-gate mixer,” in IEEE Radio Freq. Integr. Circuits (RFIC) Symp. Dig., Jun. 2005, pp. 163–166.

[96] B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath, “Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology,” IEEE Microw.

Wireless Compon. Lett., vol. 16, no. 1, pp. 25–27, Jan. 2006.

[97] B. Razavi, “A 900-MHz CMOS direct conversion receiver,” in VLSI Circuits Symp. Dig. Tech. Papers, Jun. 1997, pp. 113–114.

[98] T. Melly, A.-S. Porret, C. C. Enz, and E. A. Vittoz, “An analysis of flicker noise rejection in low-power and low-voltage CMOS mixers,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 102–109, Jan. 2001.

[99] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE Int. Solid State Circuits Conf.

(ISSCC) Dig. Tech. Papers, Feb. 1996, pp. 392–393.

[100] H. Darabi and A. A. Abidi, “Noise in RF-CMOS mixers: a simple physical model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15–25, Jan. 2000.

[101] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO, ” IEEE J. of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec 2002.

[102] P.-H. Chen, M.-C. Chen, C.-L. Ko, and C.-Y. Wu, “An integrated CMOS front-end receiver with a frequency tripler for V-band applications,” prepare for submission to IEEE Trans. Circuits Syst. Part I.