• 沒有找到結果。

Chapter 5 Conclusions and Future Works

5.2 Future Works

With the continuously scaling CMOS technology, the gate oxide becomes much thinner. ESD become one of the most important reliability issues during mass production, must be taken into consideration. Therefore, all integrated circuits used in the wireless communication products need to be equipped with ESD protection designs. However, ESD protections cause radio-frequency (RF) performance degradation with several undesired effects, such as degrade the small-signal gain of the circuit or takes up too much layout area. Inductor-Assisted Silicon-Controlled Rectifier (LASCR) of this study will be able to overcome these drawbacks. LASCR devices exhibit good high-frequency performance between 0~35GHz, so they can be used for wideband or high-speed applications without degrading the performance of circuit.

63

參 考 文 獻

[1] B. Razavi, “CMOS technology characterization for analog and RF design,” IEEE J.

Solid-State Circuits, vol. 34, no. 3, pp. 268-276, Mar. 1999.

[2] S. Voldman, ESD Physics and Devices, John Wiley & Sons, 2005.

[3] J. Li, K. Chatty, R. Gauthier, R. Mishra, and C. Russ, “Technology scaling of advanced bulk CMOS on-chip ESD protection down to the 32nm node,” in Proc.

EOS/ESD Symp., 2009, pp. 69-75.

[4] Standard Test Method for Electrostatic Discharge (ESD) Sensitivity Testing:

Human Body Model (HBM)—Component Level, Standard ANSI/ESDA/JEDEC

JS-001-2010, 2010.

[5] M.-D. Ker, J.-J. Peng, and H.-C. Jiang, “ESD test methods on integrated circuits:

an overview,” in Proc. IEEE Int. Conf. Electronics, Circuits and Systems, 2001, pp.

1011-1014.

[6] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuit for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 173-183, Jan. 1999.

[7] C. Richier, P. Salome, G. Mabboux, I. Zaza, A. Juge, and P. Mortini, “Investigation on different ESD protection strategies devoted to 3.3 V RF applications (2 GHz) in a 0.18μm CMOS process,” in Proc. EOS/ESD Symp., 2000, pp. 251-259.

[8] S. Voldman, ESD: RF Technology and Circuits, John Wiley & Sons, 2006.

[9] Y. Li, J. Liou, J. Vinson, and L. Zhang, “Investigation of LOCOS- and polysilicon-bound diodes for robust electrostatic discharge (ESD) applications,” IEEE Trans.

Electron Devices, vol. 57, no. 4, pp. 814-819, Apr. 2010.

64

[10] K. Bhatia, N. Jack, and E. Rosenbaum, “Layout optimization of ESD protection diodes for high-frequency I/Os,” IEEE Trans. Device Mater. Rel., vol. 9, no. 3, pp.

465-475, Sep. 2009.

[11] S. Galal and B. Razavi, “Broadband ESD protection circuits in CMOS technology,”

IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2334-2340, Dec. 2003.

[12] D. Linten, S. Thijs, J. Borremans, M. Dehan, D. Tremouilles, M. Scholz, M.

Natarajan, P. Wambacq, and G. Groeseneken, “T-diodes - a novel plug-and-play wideband RF circuit ESD protection methodology,” in Proc. EOS/ESD Symp., 2007, pp. 242-249.

[13] C.-Y. Lin and M.-L. Fan, “Design of ESD protection diodes with embedded SCR for differential LNA in a 65-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 11, pp. 2723-2732, Nov. 2014.

[14] M. Tsai, S. Hsu, F. Hsueh, C. Jou, and T. Yeh, “A 17.5-26 GHz low-noise amplifier with over 8 kV ESD protection in 65 nm CMOS,” IEEE Microw.

Wireless Compon. Lett., vol. 22, no. 9, pp. 483-485, Sep. 2012.

[15] K. Raczkowski, S. Thijs, W. Raedt, B. Nauwelaers, and P. Wambacq, “50-to-67GHz ESD-protected power amplifiers in digital 45nm LP CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 382-383.

[16] M. Tsai, S. Hsu, F. Hsueh, C. Jou, and T. Yeh, “Design of 60-GHz low-noise amplifiers with low NF and robust ESD protection in 65-nm CMOS,” IEEE Trans.

Microw. Theory Tech., vol. 61, no. 1, pp. 553-561, Jan. 2013.

[17] C.-Y. Lin, L.-W. Chu, and M.-D. Ker, “Design and implementation of configurable ESD protection cell for 60-GHz RF circuits in a 65-nm CMOS process,” Microelect. Rel., vol. 51, no. 8, pp. 1315-1324, Aug. 2011.

65

[18] C.-Y. Lin, L.-W. Chu, S.-Y. Tsai, M.-D. Ker, T.-H. Lu, T.-L. Hsu, P.-F. Hung, M.-H. Song, J.-C. Tseng, T.-H. Chang, and M.-H. Tsai, “Modified LC-tank ESD protection design for 60-GHz RF applications,” in Proc. Eur. Conf. Circuit Theory Design, 2011, pp. 57-60.

[19] C.-Y. Lin, L.-W. Chu, M.-D. Ker, M.-H. Song, C.-P. Jou, T.-H. Lu, J.-C. Tseng, M.-H. Tsai, T.-L. Hsu, P.-F. Hung, and T.-H. Chang, “ESD protection structure with inductor-triggered SCR for RF applications in 65-nm CMOS process,” in Proc. IEEE Int. Rel. Phys. Symp., 2012.

[20] K. Raczkowski, S. Thijs, J. Tseng, T. Chang, M. Song, D. Linten, B. Nauwelaers, and P. Wambacq, “60 GHz low noise amplifiers with 1 kV CDM protection in 40 nm LP CMOS,” in Proc. IEEE SiRF Meeting, 2012, pp. 9-12.

[21] L.-W. Chu, C.-Y. Lin, M.-D. Ker, M.-H. Song, J.-C. Tseng, C.-P. Jou, and M.-H.

Tsai, “ESD protection design for wideband RF applications in 65-nm CMOS process,” in Proc. IEEE Int. Symp. Circuits Systems, 2014, pp. 1480-1483.

[22] M. Tsai and S. Hsu, “ESD protection design for microwave/millimeter wave low-noise amplifiers,” in Proc. IEEE Int. Wireless Symp., 2014.

[23] D. Linten et al., “A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1434-1442, Jul. 2005.

[24] C. Richier et al., “Investigation on different ESD protection strategies devoted to 3.3 V RF applications (2 GHz) in a 0.18 μm CMOS process,” J. Electrostatics, vol. 54, no. 1, pp. 55-71, Jan. 2002.

[25] C.-Y. Lin, L.-W. Chu, and M.-D. Ker, “ESD protection design for 60-GHz LNA with inductor-triggered SCR in 65-nm CMOS process,” IEEE Trans. Microw.

Theory Tech., vol. 60, no. 3, pp. 714-723, Mar. 2012.

66

[26] A. Komijani, A. Natarajan, and A. Hajimiri, “ A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1901-1908, Sep. 2005.

[27] V. Jain, F. Tzeng, L. Zhou, and P. Heydari, “A single-chip dual-band 22–29-GHz/77–81-GHz BiCMOS transceiver for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3469-3485, Dec. 2009.

[28] T. Tokumitsu, “K-band and millimeter-wave MMICs for emerging commercial wireless applications,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 11, pp.

2066-2072, Nov. 2001.

[29] K. Tsutaki, R. Seura, E. Fujiwara, and K. Tomikawa, “Development of Ka-band 100-W peak power MMPM,” IEEE Trans. Electron Devices, vol. 52, no. 5 , pp.

660-664, May 2005.

[30] F. Ellinger, “26–42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522-528, Mar. 2004.

[31] M.-D. Ker and K.-C. Hsu, “ Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits,” IEEE Trans. Device Mater. Rel., vol. 5, no. 2, pp. 235-249, Jun. 2005.

[32] S. Jang, L. Lin, S. Li, and H. Chen, “Dynamic triggering characteristics of SCR-type electrostatic discharge protection circuits,” Solid-State Elect., vol. 45, no.

7, pp. 1091-1097, Jul. 2001.

[33] M. Mergens, C. Russ, K. Verhaege, J. Armer, P. Jozwiak, R. Mohn, B. Keppens, and C. Trinh, “Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies,” IEEE Trans.

Device Mater. Rel., vol. 5, no. 3, pp. 532-542, Sep. 2005.

67

[34] L. Tiemeijer and R. Havens, “ A calibrated lumped-element de-embedding technique for on-wafer RF characterization of quality inductors and high-speed transistors,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 822-829, Mar. 2003.

68

自 傳

研究生張榮堃,生於台中市,家中父母關係良好,一家和樂,

雖然國高中階段的求學路程並非順利,所幸最後進入國立台灣師範 大學應用電子科技學系就讀。然而大學期間還在摸索未來的定位,

以致於成績並非理想,在大三的專題課程選擇了晶片設計的方向,

意外的發現對此頗感興趣。研究所階段幸運的考取國立台灣師範大 學電機工程學系,繼續選擇晶片設計這方向深造,雖然學習能力並 不是頂尖,但也很願意去了解所有相關知識,也喜歡和同學們互相 交換想法和意見。感謝老師的提拔,未來將會繼續深造,願能用己 微薄之力為人類社會創造更好的未來。

69

學 術 成 就

[1] C.-Y. Lin and R.-K. Chang, “On-chip ESD protection designs with SCR-based devices in RF integrated circuits,” IEEE Conf. Consumer Electronics-Taiwan, pp.

15-16, May 2014.

[2] C.-Y. Lin, P.-H. Chang, and R.-K. Chang, “Improving ESD Robustness of PMOS Device with Embedded SCR in 28-nm High-K/Metal Gate CMOS Process,” IEEE Trans. Electron Devices, vol. 62, no. 4, pp. 1349-1352, Apr. 2015.

[3] C.-Y. Lin and R.-K. Chang, “Design of ESD protection device for K/Ka-band applications in nanoscale CMOS process,” accepted by IEEE Trans. Electron Devices.

相關文件