• 沒有找到結果。

無線網路應用之互補金氧半射頻接收器設計

N/A
N/A
Protected

Academic year: 2021

Share "無線網路應用之互補金氧半射頻接收器設計"

Copied!
14
0
0

加載中.... (立即查看全文)

全文

(1)國 立 交 通 大 學 電子工程學系 電子研究所 博 士 論 文. 無線網路應用之互補金氧半射頻接收器設計 CMOS RF Receiver Design for Wireless LAN Applications. 研. 究. 生: 溫 文 燊. 指 導 教 授: 溫  岸. 中 華 民 國 九 十 三 年 六 月.

(2) 無線網路應用之互補金氧半射頻接收器設計 CMOS RF Receiver Design for Wireless LAN Applications 研究生: 溫文燊. Student: Wen-Shen Wuen. 指導教授: 溫岸博士. Advisor: Dr. Kuei-Ann Wen. 國 立 交 通 大 學 電子工程學系 電子研究所 博士論文 A Dissertation Submitted to the Institute of Electronics College of Electrical Engineering and Computer Science National Chiao Tung University In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In Electronics Engineering June 2004 Hsinchu, Taiwan, Republic of China. 中 華 民 國 九 十 三 年 六 月.

(3) 無線網路應用之互補金氧半射頻接收器設計. 指導教授: 溫 岸博士. 學生: 溫文燊. 國 立 交 通 大 學 電 子 研 究 所. 摘要 本論文針對應用至無線區域網路之互補式金氧半(CMOS) 射頻接收器提出系統化設計。 設計 考量涵蓋了通訊標準規格、 電路的行為模式、 電路設計到封裝模型以及射頻/基頻共同驗證的 方法。 對於各種無線區域網路之標準提出 2.4/5-GHz 雙頻直接轉換接收器架構之系統分析, 並針對部分關鍵電路進行設計實做。 首先以0.25-µm 互補式金氧半製程技術設計之5-GHz 頻 段低雜訊放大器。 此低雜訊放大器配有雙頻可切換負載, 能夠操作於 5-GHz 無線區域網路應 用之低頻段與高頻段; 其頻段的切換特性並不因溫度改變而影響。 此外, 本文提出一個低閃爍 雜訊、 電流折疊 (Current-Folded) 之混波器結構應用於低電壓直接轉換接收器。 提出的混波 器分離了傳統 Gilbert-Cell 混波器結構在雜訊指數、 轉換增益以及交互調變失真之間的設計 取捨, 並且比 「注射電流復用」 (Current-Reused Injection) 的架構展現更佳的效能。 並以 0.18-µm 互補式金氧半製程進行電路實作, 實驗結果驗證此混波器電路架構的優點。 再者, 提 出射頻/基頻共同驗證的方法, 得以在接收器進行實作前確認接收器之系統 EVM 表現, 並以 0.25-µm 互補式金氧半製程技術實做 2.4-GHz 直接轉換前端接收器, 實驗結果與射頻/基頻 共同模擬的結果相當吻合。 i.

(4) CMOS RF Receiver Design for Wireless LAN Applications Student: Wen-Shen Wuen. Advisor: Dr. Kuei-Ann Wen. Institute of Electronics National Chiao Tung University. Abstract The dissertation presents the systematic design of a direct conversion CMOS radio receiver for wireless LAN applications.. The design considerations cover from. standard specifications, circuit behaviors, schematic designs to package models as well as the RF/Baseband co-verification method. A 2.4/5 GHz dual-band receiver architecture is proposed and analyzed for various wireless LAN applications and some of the key circuits are designed and implemented. First a 5-GHz low noise amplifier designed in 0.25-µm CMOS technology is presented. The LNA equips with a dual-band switchable load and is capable to operate in the upper and lower bands in the 5-GHz WLAN band. The switching ability is not affected by the temperature variation. In addition, a low flicker noise current-folded mixer topology for low voltage direct conversion receiver is also proposed. The proposed mixer decouples the design tradeoffs between noise figure, conversion gain and third order intermodulation distortion in Gilbert-cell mixers and exhibits much ii.

(5) better performance compared with the conventional current-reused injection mixers. Moreover, an RF/Baseband co-verification methodology has been proposed to verify system EVM performance of the receiver prior to chip fabrication. A 2.4-GHz direct conversion front-end receiver has been implemented in 0.25-µm CMOS technology as a part of the dual-band receiver and the measurement result shows agreement with the RF/Baseband co-simulation result.. iii.

(6) 誌謝 這本論文的完成需要感謝許多的朋友、 同事與同學, 由於他們的時時刻刻支持與鼓勵, 才讓我 得以完成博士論文。 首先, 最要感謝的是指導教授溫岸老師。 在這幾年研究生涯中, 無論是在學術研究或待人 處事上, 因為老師的指導與教誨, 使我可以不斷的成長; 也由於老師提供自由的研究空間, 使我 能夠隨心所欲地進行研究, 激發研究的樂趣。 此外, 我要由衷感謝師丈陳良波博士, 在這幾年 中除了在 RF 的研究方向給予指引, 並時常給予關懷與勉勵, 讓我得以持續努力、 堅持下去。 其次要特別感謝學位考試委員們在百忙之中抽空前來給予論文指導; 承蒙口試委員們的指導與 建議, 才能讓本論文的內容得以更加完備。 很榮幸能成為無線通訊技術實驗室的一員, 參與 RF 電路的研究工作。 我要感謝 RF 團隊: 美芬學姐、 哲生、 文安, 感謝他們對我論文研究所給予的批評與討論, 以及熬夜趕工的互相打 氣。 感謝 Baseband 團隊: 嘉笙、 源欣, 在論文研究過程中所給予的協助與建議討論。 特別是嘉 笙, 能夠經常與其討論關於無線通訊系統的大大小小問題, 讓我能夠順利完成 RF/Baseband 共同驗證的工作。 感謝實驗室眾多的學弟們, 直接或間接所給予的協助。 在 RF 電路的研究中, 總要面對許多的量測問題。 在這裡要特別感謝國家奈米元件實驗室 黃國威博士, 在元件物理、 模型及高頻量測技術上給予深入淺出的指導, 讓我得到許多觀念, 在 論文研究上有許多幫助。 由衷感謝黃博士所領導的射頻元件模型實驗室團隊, 對於我在電路測 量上許許多多的特殊的、 不合理的要求, 都能不辭辛勞、 鼎力協助。 感謝爸爸、 媽媽的不辭辛勞、 全心全力一路支持我; 在研究過程中難免遇到些挫折, 也因為 家人的勉勵, 讓我重拾信心全力以赴, 完成學業。 謹將本論文獻給我最親愛的家人。 溫文燊 93 年6 月. iv.

(7) Contents i. 摘要 Abstract. ii. 誌謝. iv. 1 Introduction. 1. 1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1. 1.2. Organization. 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2 Wireless LAN Radio Receiver. 4. 2.1. Overview of Wireless LAN Standards . . . . . . . . . . . . . . . . . .. 4. 2.2. Wireless LAN Radio Specifications . . . . . . . . . . . . . . . . . . .. 5. 2.2.1. Frequency Bands . . . . . . . . . . . . . . . . . . . . . . . . .. 6. 2.2.2. Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6. 2.2.3. Maximum Input Level . . . . . . . . . . . . . . . . . . . . . .. 6. 2.2.4. Adjacent and Non-adjacent Channel Rejection . . . . . . . . .. 8. 2.2.5. Receiver Input Blocking . . . . . . . . . . . . . . . . . . . . .. 8. Receiver Specification Calculation . . . . . . . . . . . . . . . . . . . .. 9. 2.3.1. Noise Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9. 2.3.2. Third Order Intermodulation . . . . . . . . . . . . . . . . . . 11. 2.3.3. Second Order Intermodulation . . . . . . . . . . . . . . . . . . 11. 2.3.4. Image Rejection Ratio . . . . . . . . . . . . . . . . . . . . . . 11. 2.3. v.

(8) 2.4. 2.5. 2.6. Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.1. DC Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15. 2.4.2. Even-Order Intermodulation . . . . . . . . . . . . . . . . . . . 16. 2.4.3. I/Q Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . 17. 2.4.4. Flicker Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 18. Receiver Link Budget Plan . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.1. Noise Figure Calculation in Integrated Receivers . . . . . . . . 20. 2.5.2. Intercept Point Calculation . . . . . . . . . . . . . . . . . . . 23. 2.5.3. Dual-band Specifications Revisited . . . . . . . . . . . . . . . 24. 2.5.4. Link Budget Analysis . . . . . . . . . . . . . . . . . . . . . . . 26. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27. 3 Dual-Band Switchable Low Noise Amplifier Design. 28. 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28. 3.2. Radio Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30. 3.3. Recent LNA Researches . . . . . . . . . . . . . . . . . . . . . . . . . 30. 3.4. Broadband Load Design . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4.1. Broadband Continuous-Tuned Load . . . . . . . . . . . . . . . 37. 3.4.2. Dual-band Load . . . . . . . . . . . . . . . . . . . . . . . . . . 39. 3.4.3. Proposed Dual-band Switchable Load . . . . . . . . . . . . . . 39. 3.5. Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44. 3.6. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 45. 3.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50. 4 Low Flicker Noise Current-Folded Mixer. 51. 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51. 4.2. Design Considerations on 1/f Noise Reduction . . . . . . . . . . . . . 53. 4.3. The Proposed Current-Folded Topology . . . . . . . . . . . . . . . . . 55. 4.4. Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 vi.

(9) 4.5. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 64. 4.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69. 5 RF/Baseband Co-verification and Co-design. 73. 5.1. Necessity of RF/Baseband Co-verification . . . . . . . . . . . . . . . 73. 5.2. RF/Baseband Co-verification Methodology . . . . . . . . . . . . . . . 77 5.2.1. Co-verification Platform . . . . . . . . . . . . . . . . . . . . . 77. 5.2.2. Performance Measure for Co-verification . . . . . . . . . . . . 78. 6 Case Study: 2.4-GHz Direct Conversion Receiver 6.1. 80. Receiver Front-End Design . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1.1. Behavior Design . . . . . . . . . . . . . . . . . . . . . . . . . . 81. 6.1.2. Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 83. 6.2. RF/Baseband Co-verification and Co-design . . . . . . . . . . . . . . 85. 6.3. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 88. 6.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89. 7 Conclusions. 94. 7.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94. 7.2. Recommendations for Future Work . . . . . . . . . . . . . . . . . . . 95. A EVM and SNR. 96. B An Implementation of 2.4-GHz Low Noise Amplifier. 98. Bibliography. 102. vii.

(10) List of Tables 2.1. Wireless LAN Standards. . . . . . . . . . . . . . . . . . . . . . . . . .. 5. 2.2. Frequency Bands of various WLAN standards. . . . . . . . . . . . . .. 6. 2.3. Rate-dependent sensitivity specifications for various WLAN standards.. 7. 2.4. Maximum input signal levels. . . . . . . . . . . . . . . . . . . . . . .. 7. 2.5. Adjacent/Non-adjacent channel rejection specifications. . . . . . . . .. 8. 2.6. Receiver input blocking levels for HIPERLAN/2. . . . . . . . . . . .. 9. 2.7. Radio receiver specifications for IEEE 802.11b WLAN. . . . . . . . . 10. 2.8. Radio receiver specifications for IEEE 802.11a/g WLAN. . . . . . . . 12. 2.9. Radio receiver specifications for HIPERLAN/2. . . . . . . . . . . . . 13. 2.10 Specification for integrated dual-band direct conversion receivers. . . 25 2.11 Dual-band receiver link budget plan. . . . . . . . . . . . . . . . . . . 27 3.1. Receiver noise figure specifications for IEEE 802.11a and HIPERLAN/2. 30. 3.2. LNA component list . . . . . . . . . . . . . . . . . . . . . . . . . . . 44. 3.3. Summary of the LNA measured performance. . . . . . . . . . . . . . 48. 4.1. Comparison of the current-reused injection mixer and the proposed current-folded mixer performances based on simulations. . . . . . . . 61. 4.2. Performance summary of both mixers . . . . . . . . . . . . . . . . . . 69. 6.1. Element List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84. 6.2. RF/Baseband Co-verification Results . . . . . . . . . . . . . . . . . . 88. viii.

(11) List of Figures 2.1. Dual-band direct conversion receiver architecture. . . . . . . . . . . . 14. 2.2. DC offset results from self-mixing of (a) LO and the leaked LO (b) RF interferer and the leaked RF interferer. . . . . . . . . . . . . . . . 15. 2.3. DC offset cancellation techniques. . . . . . . . . . . . . . . . . . . . . 16. 2.4. EVM versus amplitude and phase errors. . . . . . . . . . . . . . . . . 19. 2.5. Cascaded radio receiver. . . . . . . . . . . . . . . . . . . . . . . . . . 20. 2.6. Cascaded receiver stages with arbitrary input and output impedances. 22. 3.1. Frequency band allocation of 5-GHz wireless LAN standards. . . . . . 29. 3.2. Direct conversion receiver architecture for 5-GHz wireless LAN. . . . 31. 3.3. Receiver noise figure degradation. . . . . . . . . . . . . . . . . . . . . 31. 3.4. Common low noise amplifier topologies. . . . . . . . . . . . . . . . . . 32. 3.5. Minimum noise figure versus drain current of a MOSFET. . . . . . . 34. 3.6. Current reuse transconductance. . . . . . . . . . . . . . . . . . . . . . 34. 3.7. The stack cascode for current reuse. . . . . . . . . . . . . . . . . . . . 35. 3.8. Broadband load design: (a) tuned load; (b) dual-band load; (c) proposed dual-band switchable load. . . . . . . . . . . . . . . . . . . 38. 3.9. Gate capacitance of the PMOS capacitor. . . . . . . . . . . . . . . . . 40. 3.10 Dual-band switchable LNA schematic. . . . . . . . . . . . . . . . . . 41 3.11 Simulated power gain and noise figure of the LNA. . . . . . . . . . . 42 3.12 Simulated input and output return losses of LNA. . . . . . . . . . . . 43 3.13 LNA chip photo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ix.

(12) 3.14 LNA measurement results at Vctrl = 0 and 2.5 V : (a) noise figure; (b) power gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.15 Power gain measurement at three different temperatures (−5, 25 and 65◦ C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.16 Measurement results: (a) s11 and s22 in Smith chart; (b)input and output return losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.17 LNA IP3 measurement results at Vctrl = 0 V .. . . . . . . . . . . . . . 50. 4.1. A single-balanced mixer with charge injection. . . . . . . . . . . . . . 52. 4.2. A single-balanced mixer with current-reused injection. . . . . . . . . . 55. 4.3. A single-balanced mixer with the proposed low-voltage current-folded topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56. 4.4. Equivalent circuit model for the proposed mixer. . . . . . . . . . . . . 58. 4.5. Simulated noise figure and conversion gain of the proposed mixer as the switching pair gate voltage VLO,BIAS sweep. . . . . . . . . . . . . 58. 4.6. Simulated noise figure with IF frequency sweep. . . . . . . . . . . . . 60. 4.7. Simulated noise figure with RF input power sweep. . . . . . . . . . . 61. 4.8. Simulated conversion gain with RF input power sweep. . . . . . . . . 62. 4.9. Simulated IM3 with RF input power sweep. . . . . . . . . . . . . . . 63. 4.10 The proposed current-folded mixer chip photograph. . . . . . . . . . . 64 4.11 Current-reused injection mixer chip photograph. . . . . . . . . . . . . 64 4.12 Noise figure measurement setup. . . . . . . . . . . . . . . . . . . . . . 65 4.13 Measured noise figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.14 Measured conversion gain. . . . . . . . . . . . . . . . . . . . . . . . . 67 4.15 Measured noise figure as LO power level sweeps. . . . . . . . . . . . . 68 4.16 Measured conversion gain as LO power level sweeps. . . . . . . . . . . 69 4.17 Measured noise figure and conversion gain of the proposed mixer as VB,LO sweeps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70. x.

(13) 4.18 Measured noise figure and conversion gain of the current-reused injection mixer as VB,LO sweeps. . . . . . . . . . . . . . . . . . . . . . 70 4.19 Measured 2nd and 3rd order intermodulation of the proposed mixer at 1.8V power supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.20 Measured 2nd and 3rd order intermodulation of the proposed mixer at 1.2V power supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.21 Measured 2nd and 3rd order intermodulation of the current-reused injection mixer at 1.8V power supply. . . . . . . . . . . . . . . . . . . 72 4.22 Measured 2nd and 3rd order intermodulation of the current-reused injection mixer at 1.2V power supply. . . . . . . . . . . . . . . . . . . 72 5.1. Wireless LAN transceiver system. . . . . . . . . . . . . . . . . . . . . 74. 5.2. Wireless SOC top-down design flow. . . . . . . . . . . . . . . . . . . . 75. 5.3. RF/Baseband co-verification platform. . . . . . . . . . . . . . . . . . 77. 6.1. The wireless LAN transcevier architecture. . . . . . . . . . . . . . . . 81. 6.2. Receiver noise and gain budget analysis at high gain mode. . . . . . . 82. 6.3. The receiver front-end schematic. . . . . . . . . . . . . . . . . . . . . 83. 6.4. The receiver front-end simulation results:. (a) noise figure; (b). conversion gain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.5. QFN package equivalent circuit model. . . . . . . . . . . . . . . . . . 86. 6.6. Effects of the highpass cutoff frequency on EVM. . . . . . . . . . . . 86. 6.7. EVM converges when number of symbol is larger than 1000. . . . . . 87. 6.8. The RF receiver front-end circuit layout. . . . . . . . . . . . . . . . . 89. 6.9. The RF receiver front-end circuit board. . . . . . . . . . . . . . . . . 90. 6.10 The RF receiver front-end circuit board schematic. . . . . . . . . . . 91 6.11 Other circuit board: (a) the quadrature phase shifter; (b) the variable gain amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.12 EVM measurement setup. . . . . . . . . . . . . . . . . . . . . . . . . 92. xi.

(14) 6.13 EVM measurement result of the receiver front-end. . . . . . . . . . . 93 6.14 EVM versus input power. . . . . . . . . . . . . . . . . . . . . . . . . 93 A.1 Error vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 B.1 2.4-GHz low noise amplifier schematic. . . . . . . . . . . . . . . . . . 99 B.2 Simulation results: (a) power gain (b) noise figure; compared Q estimation of 5 to10 with RF spiral cells. . . . . . . . . . . . . . . . . 100 B.3 2.4-GHz low noise amplifier photograph. . . . . . . . . . . . . . . . . 101 B.4 The measured noise figure and power gain of the LNA. . . . . . . . . 101. xii.

(15)

參考文獻

相關文件

z 香港政府對 RFID 的發展亦大力支持,創新科技署 06 年資助 1400 萬元 予香港貨品編碼協會推出「蹤橫網」,這系統利用 RFID

Microphone and 600 ohm line conduits shall be mechanically and electrically connected to receptacle boxes and electrically grounded to the audio system ground point.. Lines in

In the citric acid cycle, how many molecules of FADH are produced per molecule of glucose.. 111; moderate;

This design the quadrature voltage-controlled oscillator and measure center frequency, output power, phase noise and output waveform, these four parameters. In four parameters

Abstract - A 0.18 μm CMOS low noise amplifier using RC- feedback topology is proposed with optimized matching, gain, noise, linearity and area for UWB applications.. Good

The major testing circuit is for RF transceiver basic testing items, especially for 802.11b/g/n EVM test method implement on ATE.. The ATE testing is different from general purpose

傳統的 RF front-end 常定義在高頻無線通訊的接收端電路,例如類比 式 AM/FM 通訊、微波通訊等。射頻(Radio frequency,

In order to use the solar rays more efficient and improve the conversion efficiency of solar cell, it is necessary to use antireflection layer to reduce the losses of