• 沒有找到結果。

製作於單晶矽與低溫多晶矽基材之高性能整合型功率橫向雙擴散金氧半場效電晶體

N/A
N/A
Protected

Academic year: 2021

Share "製作於單晶矽與低溫多晶矽基材之高性能整合型功率橫向雙擴散金氧半場效電晶體"

Copied!
10
0
0

加載中.... (立即查看全文)

全文

(1)國. 立. 交. 通. 大. 學. 電子工程學系電子研究所 博 士 論 文 製作於單晶矽與低溫多晶矽基材之高性能整 合型功率橫向雙擴散金氧半場效電晶體 之分析 Analyses of High-Performance Integrated Power Lateral Double-Diffused Metal-Oxide-Semiconductor Field-Effect-Transistors Fabricated on Single Crystalline and Low Temperature Polycrystalline Silicon Materials. 研 究 生: 張芳龍. Fang-Long Chang. 指導教授: 鄭晃忠 博士. Dr. Huang-Chung Cheng. 中華民國九十三年七月.

(2) 製作於單晶矽與低溫多晶矽基材之高性能整合型功率橫向雙 擴散金氧半場效電晶體之分析 Analyses of High-Performance Integrated Power Lateral Double-Diffused Metal-Oxide-Semiconductor Field-Effect-Transistors Fabricated on Single Crystalline and Low Temperature Polycrystalline Silicon Materials 研 究 生: 張芳龍. Student: Fang-Long Chang. 指導教授: 鄭晃忠 博士. Advisor: Dr. Huang-Chung Cheng. 國 立. 交 通. 電子工程學系. 大 學. 電子研究所. 博 士 論 文. A Dissertation Submitted to Institute of Electronics College of Electrical Engineering and Computer Science National Chiao Tung University In partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Electronics Engineering. July 2004 Hsinchu, Taiwan, Republic of China. 中華民國九十三年七月 ix.

(3) 製作於單晶矽與低溫多晶矽基材之高性能整合型功率 橫向雙擴散金氧半場效電晶體之分析. 研究生:張芳龍. 指導教授:鄭晃忠 博士. 國立交通大學電子工程學系暨電子研究所. 摘要. 於本論文中,為了系統單晶片化(System-On-a-Chip)的目標,我們已藉由絕緣 矽基板(Silicon-On-Insulator)的優越隔離特性與雙極性互補式金氧半雙擴散金氧半 (Bipolar-CMOS-DMOS)的雙極性類比功能、互補式金氧半數位設計和雙擴散金氧 半高電壓之混合技術來進行這項研究。而為了改善在絕緣基板中因較差的降低表 面電場效應(RESURF)所造成的低耐壓特性,我們研究以橫向區塊式梯階濃度分布 取代複雜的線性級濃度分布。為了朝向未來可在任何基材做整合化的目標,我們 已結合薄膜技術與功率元件結構利用準分子結晶發展出低溫多晶矽橫向雙擴散金 氧半電晶體。並藉由 400 °C 雷射過程基板加熱方式使低溫多晶矽橫向雙擴散金氧 半電晶體未來可當作在系統單基板(System-On-a-Panel)化和三度空間電路整合 (Three-Dimensional Circuit Integrations)的驅動元件。為了了解在三度空間電路整合 的熱散問題,對三度空間電路整合作熱問題的分析是有其必要性的。 首先,我們成功的在不更動任何測試性參數下把十二伏特開基極崩潰和二十 五伏特開射極崩潰電壓雙極性、1.2 伏特起始電壓的互補式金氧半和四十伏特崩潰 電壓擴散金氧半之雙極性互補式金氧半雙擴散金氧半技術直接用在絕緣矽基板橫 x.

(4) 向雙擴散金氧半元件的製作。而為了同時表現出其高功率、高速度和高頻率的特 性,其輸出特性、切換與微波性能將以中道方式取代個別特性的最佳化。最後, 根據實驗結果,被證實矽基材型的雙極性互補式金氧半雙擴散金氧半技術(Bulk Bipolar-CMOS-DMOS)可藉由絕緣矽基板材料來達到高速度、高頻率和高耐壓的應 用,像是高電壓整合型電路開關(10-9秒範圍)與射頻功率放大器(從 106赫茲到 109赫 茲)。 在階梯濃度的研究中,我們提出區域劃分方法去分析高電壓階梯濃度型絕緣 矽基板橫向絕緣閘極雙載子電晶體的結構。發現在導通狀態電特性梯階濃度與線 性級濃度元件有相同的順向電壓降。藉由區域劃分中點方式可以推導出崩潰電壓 並且可以指出在漂移區中的相關崩潰電場值。再者,為了減少不必要的光罩數, 我們發展出衰減因數(Degraded Factor)去求得在最少分區數(Frames)下得到較好的 性能。最後,用 660 伏特的梯階濃度結果為例去跟模擬器(MEDICI Simulation)的 606.6 伏特結果比較發現非常的吻合。 在系統單基板化和三度空間電路整合的研究中,我首次提出一新奇的利用準 分子雷射長晶技術製作的低溫多晶矽高電壓橫向雙擴散金氧半電晶體(LTPS LDMOS)。然而,為了提升此元件的特性,將從兩個著眼點出發:一是整合功率元 件與薄膜技術,另一是說明準分子雷射處理對製造低溫元件的必要性。根據結果 得到,在漂移區長度 15-µm和二十五伏特汲極電壓下,經過雷射處理過後的開關 電流比(ON/OFF Current Ratio)較處理前的大了 106倍之多。且經過雷射處理過後的 低溫多晶矽高電壓橫向金氧半電晶體在特性導通阻抗和崩潰電壓下也展現出比以 前 像 是 半 絕 緣 (Semi-Insulating) 、 金 屬 場 效 平 板 (Metal-Field-Plate) 和 移 位 汲 極 (Offset-Drain)等高電壓薄膜電晶體(High-Voltage Thin Film Transistors)較好的交換 特性(Trade-Off)。 為了進一步提高多晶矽薄膜的結晶性質與低溫多晶矽高電壓橫向雙擴散金氧 半電晶體的性能,我們將首次利用準分子雷射結晶時 400 °C基板加熱來達到低溫 多晶矽高電壓橫向雙擴散金氧半電晶體的高電壓與極低導通電阻的特性。其開關 xi.

(5) 電流比在 0.1 伏特和 10 伏特汲極電壓各自展現出 2.96 × 105和 6.72 × 106的特性。 最大電流上限值提高到 10mA最大功率上限提升到 1 瓦特以上在 90 伏特汲極電壓 和 20 伏特閘極電壓時。相較於傳統的移位汲極(Offset-Drain)薄膜電晶體,其尺寸 在通道寬長比(W/Lch)600-µm/12-µm下的特性導通阻抗可減少 667 倍。 本論文的最後,我們將討論熱散問題因為有許多有潛力的應用都需要在較高 溫度下操作。功率的浪費造成元件額外的溫度上身使得其在高溫環境下發生的效 應更為嚴重。而且就功率元件而言常常會比一般元件溫度來的高些,但如果過高 的溫度發生在有問題的元件上常常會造成重大的損毀。對於單一顆功率元件的損 壞可能會使一台電腦當機、終止汽車的驅動系統或使得一正在運行的車輛停止前 進。這問題在三維電路整合會比二維晶片來的嚴重因為在相同的功率下因三維晶 片比二維晶片面積要小,導致功率密度極劇上升。所以,確實的了解功率電晶體 的熱性質對於使用這些元件的系統可靠度來說是很重要的。為了了解這問題,我 們將研究當環境溫度在 300 K 到 400K 時在單晶矽與多晶矽高壓元件間的不同電特 性與討論室溫和 400 °C 雷射長晶技術之低溫多晶矽高電壓橫向雙擴散金氧半電晶 體的熱穩定度特性。結果發現在 400 °C 雷射長晶技術的低溫多晶矽高電壓橫向雙 擴散金氧半電晶體展現出比雷射長晶技術前和室溫雷射長晶技術的低溫多晶矽高 電壓橫向雙擴散金氧半電晶體(LTPS LDMOS)低的熱敏感度。因此,400 °C 雷射長 晶技術的低溫多晶矽高電壓橫向雙擴散金氧半電晶體非常適合用在未來高熱可靠 度的系統單基板化應用。. xii.

(6) Analyses of High-Performance Integrated Power Lateral Double-Diffused Metal-Oxide-Semiconductor Field-Effect-Transistors Fabricated on Single Crystalline and Low Temperature Polycrystalline Silicon Materials. Student : Fang-Long Chang. Advisor : Dr. Huang-Chung Cheng. Department of Electronics Engineering & Institute of Electronics National Chiao Tung University. ABSTRACT. In this dissertation, for the sake of system-on-a-chip (SOC), silicon-on-insulator (SOI) and Bipolar-CMOS-DMOS (BCD) technology have been studied because of its superior isolation characteristics and mixture of the analog functions of bipolar, digital design of CMOS and high-voltage elements of DMOS on the same chip. In order to improve breakdown voltage from less reduced-surface-field (RESURF) effect of SOI devices, the step doping profile are investigated instead of complicated linearly graded doping profile by the distinct doping region along lateral direction. In order to stride forward the future integrations on any substrates, the LTPS LDMOS using excimer laser crystallization has been demonstrated by combination of the thin film technology and power device architecture. The LTPS LDMOS at 400 °C substrate heating during excimer laser annealing will be used to expect to be a future driver device in system-on-a-panel (SOP) and three-dimensional (3-D) circuit integrations. Additionally, in order to comprehend heat dissipation in 3-D integration circuits, analyses of thermal problems in 3-D circuits are necessary. First, traditional Bipolar-CMOS-DMOS (BCD) technology, which is designed for xiii.

(7) only lateral bipolar (Bipolar, 12 V BVCEO and 25 V BVCBO), complementary metal oxide semiconductor (CMOS, 1.2 V threshold voltage) and double diffused metal oxide semiconductor (DMOS, 40 V breakdown voltage) transistors on the bulk silicon wafer, has been successfully utilized directly to fabricate silicon-on-insulator lateral-double -diffused-metal-oxide-semiconductor (SOI LDMOS) for the first time without changing any trial parameters. To simultaneously display the characteristics of high-power, high-speed and high-frequency, the results of output characteristics, switch and microwave performance must be moderate instead of individual optimum. Finally, according to the experimental results, it is proved that Bulk-BCD technology simultaneously enables high speed, high frequency and high blocking voltage applications⎯such as those in high-voltage integrated circuit switches (ns-range) and RF power amplifiers (MHz range to GHz range)⎯using a SOI wafer. In the study of step doping profile, a partition method is proposed to analyze the high-voltage step-doping silicon on insulator lateral insulated gate bipolar transistor (Step-Doping SOI-LIGBT) structure. The on-state characteristics will be present with the similar forward voltage drop (Vce) value between the step doping and linearly graded doping devices. The breakdown voltage can be deduced by the partition mid-point method and the corresponding breakdown electric field will also be fingered out in the step drift region. Furthermore, in order to reduce the undesirable additional masks, the degraded factor (D) is developed to evaluate the minimum number of frames with the better performance. Eventually, a 660 V step analytical results will be exemplified to compare with a 606.6 V MEDICI simulation, which shows very good agreement by this proposed method. In the study of future SOP and 3-D integrations, a new low-temperature polycrystalline silicon high-voltage LDMOS (LTPS HVLDMOS) using excimer laser crystallization has been proposed for the first time. However, in order to enhance LTPS xiv.

(8) HVLDMOS characteristics, there are two starting points: 1) integrate the thin film technology with the power device, 2) clarify the requirement of excimer laser treatment for low temperature power devices. As a result, the ON/OFF current ratio after laser treatment is improved over 106 times than that before laser treatment at Ldrift=15-µm and Vds=25 V. The LTPS HVLDMOS after laser treatment also demonstrates the better trade-off between the specific on resistance and breakdown voltage against the previous HVTFTs by solid phase crystallization⎯such as semi-insulating (SI), metal-field-plated (MFP), and offset-drain (OD) HVTFTs. In order to further improve the quality of crystallized poly-Si thin films and the performance of LTPS LDMOS, low-temperature poly-Si lateral double diffused metal oxide semiconductor (LTPS LDMOS) with high voltage and very low on-resistance has been achieved using excimer laser crystallization at 400 °C substrate heating for the first time. The ON/OFF current ratios were exhibited with 2.96 × 105 and 6.72 × 106 while operating at Vds=0.1 V and 10 V, respectively. The maximum current limit was up to 10 mA and maximum power limit could be enhanced over 1 Watt at Vds=90 V and Vgs=20 V. The Ron,sp with dimensions of W/Lch=600-µm/12-µm could be significantly decreased 6.67 × 102 times in the magnitude as compared with the traditional offset drain (OD) TFTs. At last part of this thesis, the issue of heat dissipation will be discussed because many potential applications require operation at elevated temperatures. The effects of a high temperature ambient are exacerbated by power dissipation which causes additional temperature rise within the device. Power devices are often expected to run hotter than other component, but the excessive temperature rise of an inherently problem device will often lead to catastrophic failure. Failure of a single power device can shut down a computer, bring to halt a motor-driven system, or stop a vehicle dead in its tracks. This problem is anticipated to be exacerbated in 3-D circuit integration because the same xv.

(9) power generated in a 2-D chip will now be generated in a smaller 3-D chip size resulting in a sharp increase in the power density. Therefore, accurate characterization of the thermal properties of power transistors is critical to the reliability of the systems using these devices. In order to understand this problem, the different electrical characteristics between crystalline and polycrystalline high voltage devices will be studied and the thermal stability of the LTPS LDMOS between the room temperature and 400 °C irradiation will also be discussed over the ambient temperatures of 300 K−400 K. The results of ambient temperature variation in LTPS LDMOS at 400 °C irradiation are demonstrated the less sensitivity than the LTPS LDMOS before laser irradiation and at room temperature irradiation. Hence, the LTPS LDMOS at 400 °C irradiation is very suitable for future system-on-a-panel (SOP) applications with higher temperature reliability.. xvi.

(10) 誌. 謝. 此論文得以完成首先感謝我的父母,張景林先生與陳真如女士,感謝父母親 的提攜和教誨,由於父親的嚴厲教育和母親的慈愛關懷,才讓我在二十多年求學 過程中,得以不斷的成長到今日的成就,還有,也要感謝我的哥哥和妹妹,有你 們的經濟支持和家庭照顧,我才能努力的完成學業到博士畢業,在我求學過程中 能努力的勤奮向學,都要歸功於家人的付出。 感謝在學校教過我的老師,由於你們不厭其煩的替我解決疑問,讓我的求知 之路順暢無阻,還有特別感謝我的指導教授鄭晃忠博士,藉由您的不斷的辛勤指 導和提攜,使得我的研究內容得以詳細且方向條理分明,沒有您的教學指導是無 法順利完成博士論文。 感謝實驗室的學長,有你們的關心與包容,我才能專心於研究中,其中特別 感謝林明璋學長在這幾年的幫助和指導,讓我的博士生涯變得踏實和豐富,感謝 林敬偉學長教導多晶矽成長方面的技術,讓我獲益良多,如今功率元件與薄膜電 晶體技術能夠整合,都是因為兩位學長的幫忙才得以順利完成,另外還要李國(日 晏)學長感謝你在模擬與數值分析上的幫助。 感謝歷年功率元件小組的成員們,雖然你們大多都已經畢業了,但以前實 驗生活的種種感覺尤新,包括廖崇維學長、曾仁洲先生、孫綸謙先生、林偉捷學 長、顏定國先生、黃全永先生、張欽鴻先生、陳志鵬先生、郭威廷先生、李鐏環 先生以及陳柏宏學弟。 感謝實驗室的同學們與學弟,有你們互相扶持才讓我的研究生活多采多 姿,包括阮全平先生、王志良先生、常鼎國先生、林高照先生、蔡春乾先生、陳 柏廷先生、賴瑞霖先生、廖大傳先生以及助理高翠敏小姐。. 最後感謝所有曾經幫助過我、支持過我及關心過我的朋友及長輩們。. xvii.

(11)

參考文獻

相關文件

→一般常用的矽源材料氣體 (Silicon Source Gases)是矽烷(SiH 4 )、二氯矽烷(DCS,Si H 2 Cl 2 ) 、三氯矽烷(TCS,SiHCl 3 ).. 了解 磊晶 磊晶 磊晶 磊晶

• 雙極性電晶體 (bipolar junction transistor , BJ T) 依結構區分,有 npn 型及 pnp 型兩種. Base

• 雙極性電晶體 (bipolar junction transistor , BJ T) 依結構區分,有 npn 型及 pnp 型兩種. Base

X-ray diffractograms of liquid crystalline polymers.... TGA results of polymers

• 後段工程是從由矽晶圓切割成一個一個的晶片 入手,進行裝片、固定、接合連接、注模成 形、引出接腳、按印檢查等工序,完成作為元

• 接續之前的例子,若原為 0.288 pF 的液晶 電容 C LC ,再並聯一個亦為 0.288 pF 的電 容C st ,則電位保持的變化值為.

在1980年代,非晶矽是唯一商業化的薄膜型太 陽能電池材料。非晶矽的優點在於對於可見光

雙極性接面電晶體(bipolar junction transistor, BJT) 場效電晶體(field effect transistor, FET).