• 沒有找到結果。

Extrasolar  Planetary  Systems

N/A
N/A
Protected

Academic year: 2022

Share "Extrasolar  Planetary  Systems"

Copied!
28
0
0

加載中.... (立即查看全文)

全文

(1)

Extrasolar  Planetary  Systems   Forma&on  and  Discovery  of  

Phil  Armitage  (Colorado)  

(2)

Physical  principles  of  planet  forma2on      orbital  stability  +  encounter  outcomes   Giant  exoplanets  

 dynamical  evolu&on,  migra&on   Terrestrial  exoplanets  

 coupling  to  giants,  Kepler  

Extrasolar  Planetary  Systems   Forma&on  and  Discovery  of  

(3)

protoplanetary  

disks   transi4on  

disks   debris    

disks  

planets  

What  can  we  observe?  

Gas  

Dust  s  ~  1mm   Gas  –  dust  

interac4on   Dust  from     collisions  

N-­‐body   dynamics   Missing:  

•  growth  mm  –  km  (“planetesimals”)  

•  planet-­‐gas  disk  interac4ons  

•  young  planetary  systems  

(4)

105  yr   106  yr   107  yr   108  yr   109  yr   µm

mm m km

103  km

Gas  disk  life&me  

Dust,  coagula4on  /   fragmenta4on  equilibrium  

Planetesimals   Cores  

Observa2ons  

Debris  disks  

β Pic

Theory  

(5)

Dynamics  of  growth  

a  

(6)

Dynamics  of  growth  

a  

Feeding  zone:  

Δa = C M

p

3M

*

#

$ % &

' (

1 3

a

mass  in  zone  4πaΔaΣ  increases   for  reasonable  Σ(r),  m  ~  a  

(7)

Dynamics  of  growth  

a  

Feeding  zone:  

Δa = C M

p

3M

*

#

$ % &

' (

1 3

a

mass  in  zone  4πaΔaΣ  increases   for  reasonable  Σ(r),  m  ~  a  

Ra4o:  

vesc

vKMp M*

a Rp

if  large,  sca[ering  or    ejec4on  

if  small,  collision  

(8)

Dynamics  of  growth  

Terrestrial  planets  

vesc  <  vK:  terrestrial     planets  grow  “in     place”      

High  ini4al  disk  Σ:  

•   more  massive    terrestrials  

•   fewer  

Feeding  zone  narrow:  collisions  lead  to  low  eccentricity    

simula&on:  Sean  Raymond  

(9)

1                                                2                                              3        r  /  AU  

108  

     

107  

     

106  

 

t  /  yr   e    

Dynamics  of  growth  

Works  well  at  leading  order  for  the  Solar  System  –  largest     discrepancy  is  over-­‐predic4on  of  mass  of  Mars…  

(10)

Dynamics  of  growth  

Giant  planets  

Require:  form  >  5  MEarth  core  before  gas  is  dissipated  in  ~  few  Myr  

too  li[le  mass  in    

feeding  zone   sca[er  rather  than    

collide  -­‐>  slow  growth  

~1-­‐3  AU   ~10-­‐20  AU  

Movshovitz  et  al.  2010  

Large  uncertain4es  due  to     envelope  opacity  (cooling)   but  consistent  with  Jupiter,   Saturn  to  leading  order  

(11)

Giant  Exoplanets  

Observa&ons  

Winn  et  al.  (2010)  

Sky  projected  angle  between  stellar   spin  axis  and  planetary  orbital  axis  

Require  migra4on  and    

eccentricity  excita4on   Hot  Jupiters  are  some4mes     misaligned  or  retrograde  

Measured  via    

transit  RV  spectroscopy  

(12)

Giant  Exoplanets  

Observa&ons  

Working  hypothesis:  explained  as  consequence  of  

•  “standard”  giant  planet  forma4on  (core  accre4on)      -­‐  possibly  at  modestly  smaller  radii  than  in          Solar  System  

•  evolu2on  due  to  exchange  of  energy  and  angular      momentum  with  gas,  other  planets,  binary  

 companion  

(13)

Giant  Exoplanets   E,  L  exchange  processes  

Planet-­‐gas  

disk  interac4on   Kozai-­‐Lidov  

interac4on   (planet  +     misaligned     binary)  

Planet-­‐planet  

sca[ering   Secular  chaos  

(14)

Giant  Exoplanets   Planet-­‐planet  scaSering  

Moeckel  &  Armitage  (2012)  

Planet  forma4on  +  migra4on   typically  leads  to  unstable     mul4ple  planet  system  as   gas  dissipates  

 Eccentricity  and  hot  Jupiters   form  dynamically  

 Occurs  early,  but  gas  may  be   negligible  to  leading  order  

(15)

Ini4al  condi4ons:  

3  gas  giants,  circular   orbits,  forming  as     close  as  1  AU  

 

N-­‐body  only  

Match  f(e)  distribu4on  for  giant  exoplanets  0.1  AU  <  a  <  1  AU   Payne  et  al.  (2014)  

(16)

Ini4al  condi4ons:  

3  gas  giants,  circular   orbits,  forming  as     close  as  1  AU  

 

N-­‐body  only  

Broad  inclina4on  distribu4on  of     planets  sca[ered  to  e  ~  1  and  then   4dally  circularized  (c.f.  Nagasawa     et  al.  08;  Beauge  &  Nesvorny  12)  

Sca[ering  gives  consistent  but  not   unique  solu4on  to  most  close-­‐in     proper4es  of  giant  exoplanets  

(17)

Dynamics  of  growth  

Large  radii  

Neptune  and  extrasolar  

planets  at  “large”  radii  (50  AU)   are  also  incompa4ble  with  in     situ  core  accre4on      

HR8799  and  other   directly  imaged     systems  cri4cal   constraints  

Marois  et  al.  2008  

(18)

Dynamics  of  growth  

Large  radii  

First  evidence  for  a  new     gravita4onal  instability     channel  for  giant  planet     forma4on?  

Predicted  to  be  inevitable   for  large  massive  disks,  but   hard  to  keep  masses  below   brown  dwarf  scale…    

(Rice  et  al.  2010;  KraSer  et  al.  2010)  

OR  –  mul4ple  cores  formed  at  smaller  scales,  migrated  out,  and   later  accreted  gas?  

Need  more  data….  

(19)

Terrestrial  Exoplanets   Theory  

•   “Solar  System-­‐like”  

 -­‐  slow  (~100  Myr),  hence  gas  free    -­‐  in  place  

 -­‐  ~independent  of  giant  planets  

•   Giant-­‐controlled  

 -­‐  substan4ally  impacted  by  violent  giant  planet  dynamics  

•   Migra4on  dominated  

 -­‐  orbital  evolu4on  among  terrestrial  precursors  

(20)

Giant  dominated  

Assume    

planet-­‐planet     sca[ering  

dominant     (Raymond    

et  al.  2011,  12)    

(21)

Terrestrial  Exoplanets   Theory  

Rich  terrestrial  planet  systems   live  in  systems  with  near-­‐  

circular  giant  planets  

Predict  currently  unobserved   popula4on  of  dynamically  

excited  terrestrials  

(22)

Kepler  systems  

Batalha  et     al.  2013  

(23)

2  obvious  challenges  for  theory…  

High  abundance  of  planets     with  radii  not  represented     in  Solar  System…  what  are   these  planets?  

Many  stars  with  close-­‐in     planetary  systems,  where     forma4on  4me  is  so  short     (<105  yr)  that  gas  disk  effects   must  be  important  

(24)

evidence  for  a  migra4on   dominated  mode?  

magnetosphere     r  ~  0.05  AU  

inner  edge   of  dead  zone  

T  ~  800  K  

snow  line     (Kretke  &  Lin  ‘07)  

solid   par4cles  

solids  drin  radially  inward  under     aerodynamic  drag  and  encounter    

traps  in  disk  (Hasegawa  &  Pudritz  11)  

(25)

planetesimal     forma4on  at  traps  

M = 10˙ 8M yr 1

αin  =  10-­‐2,  αout  =  10-­‐3,  width  w  =  2h

c.f.  coagula&on  models  of     Drazkowska  et  al.  (2013)  

Local  pressure  maxima   trap  par4cles  of  sizes  

formed  from  coagula4on   (mm-­‐cm)  readily,  especially     in  outer  disk  

   

If  gas  disk  has  local     maxima,  par4cle    

density  much  higher     at  these  loca4ons  

(26)

high  densi4es  lead  to  planetesimal  forma4on     via  collec4ve  instabili4es  

2D  streaming:  Jake  Simon  

“Least  problema4c”  route     to  planetesimal  forma4on   from  small  par4cles  involves   instabili4es  in  coupled  gas  /   par4cle  mixtures  (“streaming   instability”,  Youdin  &  Goodman   2005)  

Require  loca4ons  in  disk  where  ρpar4cle  /  ρgas  >  threshold   to  form  planetesimals…  in  a  disk  with  traps  this  will   be  at  the  loca4on  of  the  traps    

(27)

forma4on  of  planets  if     planetesimals  form   at  preferred  loca4on    in  inner  disk   produce  packed  mul4ple  systems   for  mass  fluxes  of  ~10  MEarth  /  Myr   into  traps  in  inner  disk  

 also  form  co-­‐orbital  planets…  

 not  yet  clear  if  orbital  proper4es   are  be[er  or  worse  match  to    

Kepler  systems  than  in  situ  models     Bruns  &  Armitage,  in  prep  

(28)

Summary  

Solar  System  appears  to  be  a  planetary  system  where  the     giant  planets  were  only  moderately  dynamically  ac&ve,  and     the  mass  in  the  terrestrial  region  was  low  enough  that    

the  Earth  &  Venus  formed  aner  the  gas  was  gone    

More  ac4ve  giant  planets  (higher  mass,  closer  together,     less  damping  from  Kuiper  belt)  are  common  –  result  in     eccentric  extrasolar  gas  giants,  hot  Jupiters  

 More  mass  in  (or  migra4ng  through?)  the  terrestrial  region   forms  low  mass  planets  earlier  –  close-­‐in  Kepler  systems?    

參考文獻

相關文件

Writing of a 16MB incurs 1K block erases because of the reclaiming of invalid space.. 2008/1/30 Embedded Systems and Wireless Networking Lab. 80. Wear Leveling versus

[r]

The Seed project, REEL to REAL (R2R): Learning English and Developing 21st Century Skills through Film-making in Key Stage 2, aims to explore ways to use film-making as a means

反之, 有了 parametric equation, 我們可利用這些在 R n 的 direction vectors, 利 用解聯立方程組的方法求出和這些 direction vectors 垂直的 normal vectors,

而利用 row vectors 的方法, 由於可以化為 reduced echelon form, 而 basis 是由此 reduced echelon form 中的 nonzero vectors 所組成, 所以雖然和來的 spanning

We point out that extending the concepts of r-convex and quasi-convex functions to the setting associated with second-order cone, which be- longs to symmetric cones, is not easy

Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R and NS-NS backgrounds.... Hence, we have shown the S-duality at the Poisson level for a D3-brane in R-R

• Competing physics on multiple length &amp; time