• 沒有找到結果。

Optimization of amorphous silicon layers in polycrystalline based heterostructure solar cell 溫世傑、張國雄

N/A
N/A
Protected

Academic year: 2022

Share "Optimization of amorphous silicon layers in polycrystalline based heterostructure solar cell 溫世傑、張國雄"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Optimization of amorphous silicon layers in polycrystalline based heterostructure solar cell 溫世傑、張國雄

E-mail: 317679@mail.dyu.edu.tw

ABSTRACT

In this study, simulation software ALTAS is applied for simulating the influence of amorphous layer thickness and energy gap on the performance of hetero-junction solar cells. We assume the defect density keeps unchanged when layer parameters are changed. In such case, different film thicknesses and energy gaps make different Voc and Isc, We found that Voc and Jsc changes as i-a-Si band gap changes. We also found that Voc increased as n-layer thickness decreased. Consider the matching of Back Surface Field (BSF), and Extinction Coefficient, the maximum conversion efficiency can reach to 9.9 %.

Keywords : TCAD、polycrystalline silicon、solar cell

Table of Contents

封面內頁 簽名頁 授權書.........................iii 中文摘要............

............iv Abstract......................... v 誌謝........

..................vi 目錄..........................viii 圖目錄.

........................ x 表目錄........................

.xiii 第一章 緒論...................... 1     1.1 前言.............

.......1     1.2 研究背景..................2 1.3 研究目的..........

........3 第二章 實驗原理.................... 4     2.1 太陽能電池的種類..

............4 2.1.1 單晶矽太陽能電池...........4 2.1.2 多晶矽太陽能電池......

.....5 2.1.3 非晶矽太陽能電池...........6 2.1.4 化合物半導體太陽能電池........7 2.1.5  染料敏化型 (Dye-Sensitized Solar Cells;DSS C) 太陽能電池............8     2.2 太陽能電池元件運 作原理 ..........10        2.2.1 基本太陽能電池運作原理 .......10       2.2.2 決 定太陽能電池的效率因素 ...... 12 2.3 太陽光譜 .................16 第三章 TCAD 元件 模擬軟體.............. 18     3.1 TCAD 元件模擬軟體介紹.......... 18      3.2 物理模型................. 19     3.3 載子復合模型...............

. 21     3.4 光源模擬................. 23 第四章 太陽能電池模擬與結果........

...... 24     4.1 前言................... 24     4.2 設定材料參數....

........... 25     4.3 改變 i-a-Si 厚度參數 ............27     4.4 改變 n-a-Si 厚 度參數............30     4.5 改變 BSF i-a-Si 以及BSF p-a-Si 厚度參數...32     4.6 改變 i-a-SiGe 能隙參數...........42     4.7 改變 BSF i-a-SiGe 以及BSF p-a-SiGe 能隙參數.44     4.8  模擬結果討論 ...............46 第五章 結論......................47 參考文獻........................48

REFERENCES

[1] SANYO Developa HIT Solar Cells with World’s Highest Energy Conversion Efficiency of 23.0 %,Tokyo,May 22, 2009---SANYO Electric Co., Ltd.

[2] L. Zhao, C.L. Zhou, H.L. Li, H.W. Diao, W.J. Wang, “Design optimization of bifacial HIT solar cell on p-type silicon substratesby simulation”, Solar Energy Materials & Solar Cell 90 (2008) 673-681.

[3]  L. Zhao, C.L. Zhou, H.L. Li, H.W. Diao, W.J. Wang, “Optimized resistivity of p-type Si substrate for HIT solar cell with Al back surface field by computer simulation”, Solar Energy 83 (2009) 812-816.

[4] Norberto Hemandez-Como and Arturo Morales-Acevedo, Centro de Investigacion y de Estudios Avanzados del IPN, “Hetero-junction (HIT) silicon solar cell model for AMPS-1D simulation”, 2008 5th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2008).

[5] Chandan BANERJEE, Kannan Lakshmi NARAYANAN, Keisuke HAGA, Jaran SRITHARATHIKHUN, Shinsuke MIYAJIMA, Akira YAMADA1, and Makoto KONAGAI, “Fabrication of Microcrystalline Cubic Silicon Carbide/Crystalline Silicon Heterojunction Solar Cell by

(2)

Hot Wire Chemical Vapor Deposition”, Japanese Journal of Applied Physics Vol. 46, No. 1, 2007, pp. 1–6.

[6]  M.W.M. van Cleef, F.A. Rubinelli, J.K. Rath, R.E.I. Schropp, W.F. van der Weg, R. Rizzoli, C. Summonte, R. Pinghini, E. Centurioni, R.

Galloni, “Photocarrier collection in a-SiC:Hrc-Si heterojunction solar cells”, Journal of Non-Crystalline Solids 227–230 _1998. 1291–1294.

[7]  Bingyan Ren, Yan Zhang, Bei Guo, Bing Zhang, Hongyuan Li, Wenjing Wang, Lei Zhao, Computer Simulation of p-a-Si:H/n-c-Si Heterojunction Solar Cells, Proceedings of ISES Solar World Congress 2007 [8] M. Tanaka, S. Okamoto, S. Tsuge and S. Kiyama,

“Developtment of HIT solar cells with more than 21% conversion efficiency and commercialization of highest performance HIT modules”, Third World Conference on Photovoltaic Energy Conversion, (Osaka 2003) 955-958.

[9] 鄭晃中、戴寶通 教授,太陽能電池技術手冊,台灣電子材料與元件協會。

[10] 施敏,半導體元件物理與製作技術,國立交通大學出版社。

[11] 陳宗隴,影響硒化銅銦鎵太陽能電池表現之元件特性。

[12] 趙雷,周春?,李海玲,刁宏?,王文?,”a-Si(n)/c-Si(P)異質?太陽?池薄膜矽背場的模擬優化”,物理?? Vol.57, No.5, May, 2008。

[13] 胡志華,廖顯伯,刁宏?,曾湘波,徐?月,張世斌,孔光?,” 非晶矽/晶體矽異質結太陽電池計算機模擬”,太陽能學報 增刊 2003年4。

[14] 林?生,段開敏,馬雷,”異質結矽太陽能?池 a-Si:H 薄膜的研究”, 光電子。激光第13卷第5期2002年5月。

[15] 林?生,段開敏,馬雷,”a-SiC/c-Si異質結太陽能?池設計分析”半導體學報 Vol.23,No.5。

參考文獻

相關文件

Without making any improvement in the surface treatment of the solar cell, due to the refractive index of incident medium refractive index and different, which led to the

In order to use the solar rays more efficient and improve the conversion efficiency of solar cell, it is necessary to use antireflection layer to reduce the losses of

Gratzel, “Low cost photovoltaic modules based on dye sensitized nano-crystalline titanium dioxide and carbon power,” Solar Energy Materials and Solar Cells, Vol.

Zhang, “A flexible new technique for camera calibration,” IEEE Tran- scations on Pattern Analysis and Machine Intelligence,

Kim, “Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution,” Solar Energy Materials and

In view of that, the objective of the study was to develop an automatic optical inspection system specifically for inspecting multicrystalline silicon (mc-si) solar wafer for

In the respect of anti-reflection layer, we use optical simulation to calculate reflection of multilayer films with gradient-index, to find the best optical layer thickness with

This study first surveys the thin film solar cell application of new components and thin film solar photovoltaic characteristics of the current situation in the