• 沒有找到結果。

可撓式塑膠基板低溫成長銦錫氧化物薄膜特性之研究 陳瀅照、王立民

N/A
N/A
Protected

Academic year: 2022

Share "可撓式塑膠基板低溫成長銦錫氧化物薄膜特性之研究 陳瀅照、王立民"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

可撓式塑膠基板低溫成長銦錫氧化物薄膜特性之研究 陳瀅照、王立民

E-mail: 9420021@mail.dyu.edu.tw

摘 要

本研究主要是探討以DC磁控濺鍍法分別於康寧玻璃基板Corning 1737F和PES光學級可撓式塑膠基板上鍍覆透明導電ITO薄 膜,研究探討低溫下製程ITO薄膜之其結構與光電特性之關係,以獲得最佳之成長條件。我們利用X-ray繞射儀來鑑定ITO 薄膜之磊晶方向;使用原子力顯微鏡來觀察其表面形貌與平整度;以及掃描式電子顯微鏡來觀察其薄膜/基座之界面型態

。另外,我們量測其電阻率、霍爾效應以及光穿透率,來鑑定其光電特性。 我們發現利用X-ray繞射儀來鑑定ITO薄膜之 磊晶方向,ITO薄膜具有(222)、(400)以及(440)之磊晶成長方向,另外,在相同的操作條件,隨著I(222)強度越強,所得 到ITO薄膜之電阻率越低。研究結果顯示,我們獲得最佳之製程條件為DC功率300 W,工作壓力在2 mtorr,工作溫度為室 溫,Ar和O2的比例為100:1。在此製程條件之下其中以康寧玻璃為基座:電阻率約為6.61X10-4 Ω cm,載子濃度

為2.31X1020 cm-3,在可見光範圍之穿透率可以達88 %;以PES光學級塑膠為基座:電阻率約為6.42X10-3 Ω cm,載子濃 度為1.13X1019 cm-3,在可見光範圍之穿透率可以達85 %。此結果與目前文獻之最佳條件值相較,顯現我們的ITO薄膜有 更好或相近之光電特性,此結果亦顯示,利用DC磁控濺鍍方式在室溫成長ITO薄膜,在本研究獲得之最佳成長參數之條 件下,無論在玻璃基板或PES塑膠基板上,我們均可獲得光電特性相當良好之ITO薄膜。

關鍵詞 : DC磁控濺鍍、PES、可撓式、ITO

目錄

封面內頁 簽名頁 授權書.........................iii 中文摘要............

............iv 英文摘要........................vi 誌謝.........

.................viii 目錄..........................ix 圖目錄..

.......................xii 表目錄........................

.xvii 第一章 緒論 1.1 透明導電膜................. 1 1.2 研究背景與動機...........

.... 3 第二章 理論基礎 2.1 銦錫氧化物薄膜簡介............. 7 2.2 銦錫氧化物之結構簡介....

........ 7 2.3 銦錫氧化物之電性.............. 8 2.4 銦錫氧化物之光學性質........

.... 9 2.5 濺鍍原理..................11 2.6 電漿原理..................

11 2.7 反應式磁控濺鍍............... 13 2.7.1 濺射現象............... 13 2.7.2 薄膜 沉積原理.............16 2.8 塑膠基板低溫成長ITO薄膜..........18 2.9 新世代可撓式平面 顯示器塑膠基板的特性需求與特 點.....................19 2.10 新世代可撓式平面顯示器用塑 膠基板的材質種類 ..................... 22 第三章 實驗方法與步驟 3.1 實驗流程.....

.............25 3.2 實驗材料..................26 3.2.1 靶材..........

.......26 3.2.2 基材.................26 3.2.3 氣體.................28 3.3 實驗方法..................28 3.3.1 實驗裝置...............28 3.4 鍍膜參數 及步驟...............29 3.4.1 鍍膜參數...............29 3.4.2 基座清洗.....

..........30 3.4.3 沉積ITO薄膜.............30 3.5 薄膜性質測試與分析.........

....31 3.5.1 膜厚量測...............31 3.5.2 霍爾效應量測.............32 3.5.3 X-Ray繞射分析............35 3.5.4 光學穿透率..............36 3.5.5 表面平坦度量測.

...........37 第四章 結果與討論 4.1 ITO透明導電薄膜之成長特性與結構之研究...38 4.1.1 薄膜成長 速率之探討.......... 38 4.1.1(a) DC功率之影響......... 38 4.1.1(b) 工作壓力之影響......

.. 38 4.1.1(c) 工作溫度之影響........ 39 4.1.2 製程參數對ITO薄膜結構之影響..... 44 4.1.2(a) DC功率 之影響......... 44 4.1.2(b) 工作壓力之影響........45 4.1.2(c) 工作溫度之影響........45 4.1.3 製程參數對ITO薄膜表面型態之探討... 58 4.2 製程參數對ITO薄膜光電特性之影響......69 4.2(a) DC功率 之影響............. 69 4.2(b) 工作壓力之影響........... 77 4.2(c) 工作溫度之影響....

....... 85 4.3 製程參數對ITO薄膜影響之?合討論......93 第五章 結論..............

........98 參考文獻........................100 參考文獻

(2)

[1]、古俊能;工業材料雜誌,第169期2001年1月,P.106 [2]、C. T. Hsu, J. W. Li, C. H. Liu, Y. K. Su, T. S. Wu, and M. Yokoyama, “High luminous efficiency thin-film electroluminescent devices with low resistivity insulating materials”, J. Appl. Phys. 71 (3), 1 February (1992)

1509-1512 [3]、R. Tueta and M. Braguier, 〃Fabrication and Characterization of Indium Tin Oxide Thin Films for Electroluminescent

Applications〃, Thin solid Films, 80(1981) P.143~148 [4]、F. L. Bouquet and C. R. Maag, 〃Ground Radiation Tests and Flight Atomic Oxygen Tests of ITO Protective Coatings for Galileo Spacecraft〃, IEEE Trans. Nucl. Sci., NS-33, 6(1986) P.1408~1412 [5]、J. Kane and H. P.

Schweizer, 〃Chemical Vapor Deposition of Transparent Electrically Conducting Layers of Indium Oxide Doped with Tin〃, Thin Solid Films, 29(1975) P.155~163 [6]、Keran Zhang, Furong Zhu, C.H.A. Huan, and A.T.S. Wee, “Effect of hydrogen partial pressure on optpelectronic properties of indium tin oxide thin films deposited by radio frequency magnetron sputtering method”, J. Appl. Phys. 86 (2), 15 July (1999) 974-980 [7]、L. J. Meng, and M.P.D. Santos, “Properties of indium tin oxide (ITO) films prepared by r. f. reactive magnetron sputtering at different pressures”, Thin Solid Films 303 (1997) 151-155 [8]、X. W. Sun, L. D. Wang, and H. S. Kwok, “Improved ITO thin films with a thin ZnO buffer layer by sputtering”, Thin Solid Films 360 (2000) 75-81 [9]、T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide and work-function measurements”, J. Appl. Phys. 73 (9), 1 May (1993) 4344-4350 [10]、Radhouane Bel Hadj Tahar, Takayuki Ban, Yutaka Ohya, and Yasutaka Takahashi, “Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique”, J. Appl. Phys. 83 (4), 15 February (1998) 2139-2141 [11]、Donghwan Kim, Younggun Han, Jun-Sik Cho and Seok-Keun Koh, “Low temperature deposition of ITO thin films by ion beam sputtering”, Thin Solid Films 377-378 (2000) 81-86 [12]、行政院國家科學 委員會, 〃真空技術與應用〃, 精密儀器發展 中心出版, 2001 P.389~390 [13]、Li-jian Meng and M. P. dos Santos, “Properties of indium tin oxide films prepared by rf reactive magnetron sputtering at different substrate temperature”, Thin Solid Films 322 (1998) 56-62 [14]、T. C.

Gorjanc, D. Leong, C. Py and D. Roth, “Room temperature deposition of ITO using r.f. magnetron sputtering”, Thin Solid Films 413 (2002) 181-185 [15]、Kyu-Hyum Kim, Kyoon Choi, Eui-Seok Choi, Jin-Ha Hwang and Jeung-Tae Hwang, “Indium tin oxide thin Films deposited by RF-magnetron sputtering for organic electro-luminescence devices”, Journal of Ceramic Processing Research. Vol. 4, No. 2, pp.96~100 (2003) [16]、Y. Shigesato, R. Koshi-ishi, T. Kawashima and J. Ohsako,“Early stages of ITO deposition on glass or polymer substrates”, Vacuum 59 (2000) 614-621 [17]、S Uthanna, P S Reddy, B S Naidu and P Jayarama Reddy, “Physical investigations of DC magnetron sputtered indium tin oxide films”, Vacuum Vol. 47, No. 1, pp.91~93 (1996) [18]、Sung Kyu Park, Jeong In Han, Won Keun Kim and Min Gi Kwak, “Deposition of indium-tin-oxide films on polymer substrates for application in plastic-based flat panel displays”, Thin Solid Films 397 (2001) 49-55 [19]、J. H.

Lan, and Jerzy Kanicki, “ITO surface ball formation induced by atomic hydrogen in PECVD and HW-CVD tools”, Thin Solid Films 304 (1997) 123-129 [20]、Yuzo Shigesato, Satoru Takaki, and Takeshi Haranoh, “Electrical and structural properties of low resistivity tin-doped indium oxide films”, J. Appl. Phys. 71 (7), 1 April (1992) 3356-3364 [21]、Masatoshi Higuchi, Shinichiro Uekusa, Ryotaro Nakano, and Kazuhiko Yokogawa, “Micrograin structure influence on electrical characteristics of sputtered indium tin oxide films”, J. Appl. Phys. 74 (11), 1 December (1993) 6710-6713 [22]、A.K. Kulkarni, Kirk H. Schulz, T.S. Lim, and M. Khan, “Dependence of the sheet resistance of

indium-tin-oxide thin films on grain size and grain orientation determined form X-ray diffraction techniques”, Thin Solid Films 345 (1999) 273-277 [23]、L. J. Meng, and M.P.D. Santos, “Properties of indium tin oxide films prepared by r. f. reactive magnetron sputtering at different substrate temperature”, Thin Solid Films 322(1998) 56-62 [24]、Kikuo Tominaga, Tetsuya Ueda, Takahiro Ao, Masahiro Kataoka, and Ichiro Mori, “ITO films prepared by facing target sputtering system”, Thin Solid Films 281-282 (1996) 194-197 [25]、李宗銘;工業材料雜誌,

第169期2001年1月,P.87 [26]、陳志強;工業材料雜誌,第188期2002年8月,P.183 [27]、李正中;薄膜光學與鍍膜技術,藝軒圖書出版 社,2001,P402~403 [28]、Ma Hongbin, Cho Jung-Soo, Park Chung-Hoo, “A study of indium tin oxide film deposited at low temperature using facing target sputtering system ”, Surface and Coatings Technology, 153, (2002) 131-137 [29]、呂豋復;實用真空技術,國興出版社

,2002,P8~15 [30]、C.V.R. Vasant Kumar, and Abhai Mansingh, “Effect of target- substrate distance on the growth and properties of rf-sputtered indium tin oxide films”, J. Appl. Phys. 65 (3), 1 February (1989) 1270-1280 [31]、P. Thilakan, and J. Kumar, “Studies on the preferred orientation changes and its influenced properties on ITO thin films”, Vacuum, 48 (5), (1997) 463-466 [32]、A. Amaral, P. Brogueira, C. Nunes de Carvalho, G. Lavared, “Early stage growth structure of indium tin oxide film deposited by reactive thermal evaporation”, Surface and Coatings Technology, 125, (2000) 151-156 [33]、陳靜怡;“氧化鋅中介層對ITO透明導電膜性質之影響”, 國立成功大學材料科學 及 工程學系碩士論文, (2002) P.24 [34]、黃菁樺;“銦錫氧化物透明導電薄膜之成長與光電特性之研究─應用於發光二極 體”, 大葉大學電 機工程學系碩士論文, (2004) P.39

參考文獻

相關文件

Let T ⇤ be the temperature at which the GWs are produced from the cosmological phase transition. Without significant reheating, this temperature can be approximated by the

“Polysilicon Thin Film Transistors Fabricated at 100℃ on a Flexible Plastic Substrate,” IEEE Electron Device Meeting, p. “Polysilicon Thin Film Transistors

GaN transistors with high-power, High temperature, high breakdown voltage and high current density on different substrate can further develop high efficiency,

本研究以取自石門水庫地區之低塑性黏土為研究對象,以浸水直

This research aims to manipulate surface hydrophilic/hydrophobic properties of Expanded-Polytetrafluoroethylene (e-PTFE) material by RF plasma modification system using O 2 , Ar

本研究探討空氣流量及轉爐石量對於 Chlorella sp.生長之表面物 化特及釋出有機物性質影響,可透過傅立葉轉換紅外線光譜(Fourier transform

Minami, ”Formation of Superhydrophobic Alumina Coating Films with High Transparency on Polymer Substrates by the Sol-Gel Method”, Journal of Sol-Gel Science and Technology, 26

其 m 值約可達到 1 左右,也就是呈現出牛頓型黏滯行為。該類材料主要是由滑移過程 (slip-controlled process)