• 沒有找到結果。

Section 16.7 Surface Integrals

N/A
N/A
Protected

Academic year: 2022

Share "Section 16.7 Surface Integrals"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 16.7 Surface Integrals

14. Evaluate the surface integral. RR

Sy2z2dS, S is the part of the cone y =√

x2+ z2 given by 0 ≤ y ≤ 5.

Solution:

686 ¤ CHAPTER 16 VECTOR CALCULUS

12. The sphere intersects the cylinder in the circle 2+ 2= 1,  =√

3, so  is the portion of the sphere where  ≥√ 3.

Using spherical coordinates to parametrize the sphere we have r( ) = 2 sin  cos  i + 2 sin  sin  j + 2 cos  k, and

|r× r| = 4 sin  (see Example 16.6.10). The portion where  ≥√

3corresponds to 0 ≤  ≤6, 0 ≤  ≤ 2 so



2 =2

0

6

0 (2 sin  sin )2(4 sin )   = 162

0 sin2 6

0 sin3 

= 161

2 −14sin 22

0

1

3cos3 − cos 6

0 = 16() 3

82313+ 1

=32

3 − 6√ 3

13. Using  and  as parameters, we have r( ) = (2+ 2) i +  j +  k, 2+ 2≤ 1. Then r× r= (2 i + j) × (2 i + k) = i − 2 j − 2 k and |r× r| =

1 + 42+ 42=

1 + 4(2+ 2). Thus



2 = 

2+2≤1

2

1 + 4(2+ 2)  =2

0

1

0( sin )2

1 + 42  

=2

0 sin2 1 03

1 + 42 let  = 1 + 42 ⇒ 2= 14( − 1) and   = 18

=1

2 −14sin 22

0

5 1

1

4( − 1)√

 ·18 =  · 321

5

1(32− 12)  = 321

2

55223325 1

= 321

2

5(5)5223(5)3225 +23

= 32120

3

√5 +154

= 1201  25√

5 + 1

14. Using  and  as parameters, we have r( ) =  i +√

2+ 2j+  k, 2+ 2≤ 25. Then r× r =

i+ 

√2+ 2 j

×

 

√2+ 2j+ k

= 

√2+ 2 i− j + 

√2+ 2 k and

|r× r| =

 2

2+ 2 + 1 + 2

2+ 2 =

2+ 2

2+ 2 + 1 =√ 2. Thus



22 = 

2+2≤25

(2+ 2)2

2  =√ 22

0

5

02( sin )2  

=√ 22

0 sin2  5

05 =√ 21

2 −14sin 22

0

1 665

0

=√

2 () ·16(15,625 − 0) = 15,625√ 2

6 

15. Using  and  as parameters, we have r( ) =  i + (2+ 4) j +  k, 0 ≤  ≤ 1, 0 ≤  ≤ 1. Then r× r = (i + 2 j) × (4 j + k) = 2 i − j + 4 k and |r× r| =√

42+ 1 + 16 =√

42+ 17. Thus



  =1 0

1 0 √

42+ 17   =1 0 √

42+ 17  =

1

8 ·23(42+ 17)321 0

= 121(2132− 1732) = 121  21√

21 − 17√ 17

= 74√ 21 −1712

√17

16. The sphere intersects the cone in the circle 2+ 2= 12,  = 12, so  is the portion of the sphere where  ≥ 12. Using spherical coordinates to parametrize the sphere we have r( ) = sin  cos  i + sin  sin  j + cos  k, and

|r× r| = sin  (as in Example 1). The portion where  ≥ 12 corresponds to 0 ≤  ≤4, 0 ≤  ≤ 2 so



2 =2

0

4

0 (sin  sin )2(sin )   =2

0 sin2  4

0 sin3  =2

0 sin2 4

0 (1 − cos2) sin  

=1

2 −14sin 22

0

1

3cos3 − cos 4

0 =  2

122213 + 1

=

2 35122



° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

28. Evaluate the surface integralRR

SF·dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation.

F(x, y, z) = yz i + zx j + xy k. S is the surface z = x sin y, 0 ≤ x ≤ 2, 0 ≤ y ≤ π, with upward orientation.

Solution:

SECTION 16.7 SURFACE INTEGRALS ¤ 689

and 

F· S =

[F(r( )) · (r× r)]  =2

0

0(sin3 + sin  cos3)  

=2

0  

0(1 − cos2 + cos3) sin   = (2)

− cos  +13cos3 −14cos4 0

= 2

1 −1314 + 1 −13 +14

= 83

26. F(  ) =  i −  j + 2 k,  = ( ) =

4 − 2− 2and  is the disk

( ) 2+ 2≤ 4.  has downward orientation, so by Equation 10,



F· S = −

[− ·12(4 − 2− 2)−12(−2) − (−) · 12(4 − 2− 2)−12(−2) + 2] 

= −



 

4 − 2− 2 − 

4 − 2− 2 + 2

4 − 2− 2



= −

2

4 − 2− 2 = −22

0

2 0

√4 − 2  

= −22

0  2 0 √

4 − 2 = −2(2)

12 ·23(4 − 2)322 0

= −4

0 +13(4)32

= −4 · 83 = −323

27. Let 1be the paraboloid  = 2+ 2, 0 ≤  ≤ 1 and 2the disk 2+ 2≤ 1,  = 1. Since  is a closed surface, we use the outward orientation.

On 1: F(r( )) = (2+ 2) j −  k and r× r= 2 i − j + 2 k (since the j-component must be negative on 1). Then



1F· S = 

2+ 2≤ 1

[−(2+ 2) − 22]  = −2

0

1

0(2+ 22sin2)   

= −2

0

1

03(1 + 2 sin2)   = −2

0 (1 + 1 − cos 2) 1 03

= −

2 −12sin 22

0

1 441

0= −4 ·14 = −

On 2: F(r( )) = j −  k and r× r= j. Then

2F· S = 

2+ 2≤ 1

(1)  = .

Hence

F· S = − +  = 0.

28. F(  ) =  i +  j +  k,  = ( ) =  sin , and  is the rectangle [0 2] × [0 ], so by Equation 10



F· S =

[−(sin ) − ( cos ) + ] 

= 0

2

0(− sin2 − 3sin  cos  + )  

= 0

−122 sin2 − 144sin  cos  +122=2

=0 

= 0

−2 sin2 − 4 sin  cos  + 2

 [integrate by parts in the first term]

=

122+ 12 sin 2 +14cos 2

− 2 sin2 + 2

0 = −122+14 + 214 = 122 29. F(  ) =  i −  j +  k,  = ( ) =

4 − 2− 2and  is the quarter disk

( )

 0 ≤  ≤ 2 0 ≤  ≤√

4 − 2

.  has downward orientation, so by Formula 10,

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

30. Evaluate the surface integralRR

SF·dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation.

F(x, y, z) = x i + y j + 5 k, S is the boundary of the region enclosed by the cylinder x2+ z2= 1 and the planes y = 0 and x + y = 2.

Solution:

1

(2)

1674 ¤ CHAPTER 16 VECTOR CALCULUS

30. F(  ) =  i +  j + 5 k. Here  consists of three surfaces: 1, the lateral surface of the cylinder 2+ 2= 1;

2, the front formed by the plane  +  = 2; and the back, 3, in the plane  = 0.

On 1: r( ) = sin  i +  j + cos  k. F(r( )) = sin  i +  j + 5 k and r× r= sin  i + cos  k ⇒



1F· S =2

0

2− sin 

0 (sin2 + 5 cos )  

=2

0 (2 sin2 + 10 cos  − sin3 − 5 sin  cos )  = 2

On 2: r( ) =  i + (2 − ) j +  k. F(r( )) =  i + (2 − ) j + 5 k and r× r= i + j.



2F· S = 

2+ 2≤ 1

[ + (2 − )]  = 2

On 3: F(r( )) =  i + 5 k. The surface is oriented in the negative ­direction so that n = −j and by (8),



3F· S =

3F· n S = 0. Hence,

F· S = 4.

31. F(  ) = 2i+ 2j+ 2k. Here  consists of four surfaces: 1, the top surface (a portion of the circular cylinder

2+ 2= 1); 2, the bottom surface (a portion of the ­plane); 3, the front half­disk in the plane  = 2, and 4, the back half­disk in the plane  = 0.

On 1: The surface is  =

1 − 2for 0 ≤  ≤ 2, −1 ≤  ≤ 1 with upward orientation, so by Equation 10,



1

F· S =

2 0

1

−1

−2(0) − 2

− 

1 − 2

 + 2

  =

2 0

1

−1

 3

1 − 2 + 1 − 2

 

=2 0

−

1 − 2+13(1 − 2)32+  −133=1

=−1 =2 0

4 3 =83

On 2: The surface is  = 0 for 0 ≤  ≤ 2, −1 ≤  ≤ 1 with downward orientation, so that n = −k and by (8),



2F· S =

2F· n S =2 0

1

−1

−2

  =2 0

1

−1(0)   = 0 On 3: The surface is  = 2 for −1 ≤  ≤ 1, 0 ≤  ≤

1 − 2, oriented in the positive ­direction, so that n = i and by (8),



3F· S =

3F· n S =1

−1

 √1−2

02  =1

−1

 √1−2

0 4   = 4 (3) = 2

On 4: The surface is  = 0 for −1 ≤  ≤ 1, 0 ≤  ≤

1 − 2, oriented in the negative ­direction, so that n = −i and by (8),



4F· S =

4F· n S =1

−1

 √1−2

0 (−2)   =1

−1

 √1−2

0 (0)   = 0 Thus,

F· S = 83 + 0 + 2 + 0 = 2 +83.

32. F(  ) =  i + ( − ) j +  k. Here  consists of four surfaces: 1, the triangular face with vertices (1 0 0), (0 1 0), and (0 0 1); 2, the face of the tetrahedron in the ­plane; 3, the face in the ­plane; and 4, the face in the ­plane.

On 1: The face is the portion of the plane  = 1 −  −  for 0 ≤  ≤ 1, 0 ≤  ≤ 1 −  with upward orientation,

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

44. Seawater has density 1025 kg/m3 and flows in a velocity field v = y i + x j, where x, y, and z are measured in meters and the components of v in meters per second. Find the rate of flow outward through the hemisphere x2+ y2+ z2= 9, z ≥ 0.

Solution:

SECTION 16.7 SURFACE INTEGRALS ¤ 693

(a)  =

(  ) =2

0

tan−1(34)

0 (25 sin )   = 252

0 tan−1(34)

0 sin  

= 25(2)

− cos

tan−1 34 + 1

= 50

45 + 1= 10.

Because  has constant density,  =  = 0 by symmetry, and

 = 1 

(  ) = 1012

0

tan−1(34)

0 (5 cos )(25 sin )  

= 101 (125)2

0  tan−1(34)

0 sin  cos   = 101 (125) (2)1

2sin2tan−1(34)

0 = 25 ·12

3

5

2

= 92, so the center of mass is (  ) =

0 092

 (b) =

(2+ 2)(  ) =2

0

tan−1(34)

0 (25 sin2)(25 sin )  

= 6252

0  tan−1(34)

0 sin3  = 625(2)1

3cos3 − cos tan−1(34)

0

= 1250

1 3

4 5

3

4513 + 1

= 125014 375

= 1403 

43. The rate of flow through the cylinder is the flux

v · n  =

v · S. We use the parametric representation r( ) = 2 cos  i + 2 sin  j +  kfor , where 0 ≤  ≤ 2, 0 ≤  ≤ 1, so r= −2 sin  i + 2 cos  j, r = k, and the outward orientation is given by r× r= 2 cos  i + 2 sin  j. Then



v · S = 2

0

1 0

 i + 4 sin2 j + 4 cos2 k

· (2 cos  i + 2 sin  j)  

= 2

0

1 0

2 cos  + 8 sin3

  = 2

0

cos  + 8 sin3



= 

sin  + 8

13

(2 + sin2) cos 2

0 = 0kgs

44. A parametric representation for the hemisphere  is r( ) = 3 sin  cos  i + 3 sin  sin  j + 3 cos  k, 0 ≤  ≤ 2, 0 ≤  ≤ 2. Then r= 3 cos  cos  i + 3 cos  sin  j − 3 sin  k, r = −3 sin  sin  i + 3 sin  cos  j, and the outward orientation is given by r× r= 9 sin2 cos  i + 9 sin2 sin  j + 9 sin  cos  k. The rate of flow through  is



v · S = 2 0

2

0 (3 sin  sin  i + 3 sin  cos  j) ·

9 sin2 cos  i + 9 sin2 sin  j + 9 sin  cos  k

 

= 272 0

2

0

sin3 sin  cos  + sin3 sin  cos 

  = 542

0 sin3 2

0 sin  cos  

= 54

13(2 + sin2) cos 2 0

1

2sin22

0 = 0kgs 45. consists of the hemisphere 1given by  =

2− 2− 2and the disk 2given by 0 ≤ 2+ 2≤ 2,  = 0.

On 1: E =  sin  cos  i +  sin  sin  j + 2 cos  k,

T× T= 2sin2 cos  i + 2sin2 sin  j + 2sin  cos  k. Thus



1E· S =2

0

2

0 (3sin3 + 23sin  cos2)  

=2

0

2

0 (3sin  + 3sin  cos2)   = (2)3 1 +13

= 833 On 2: E =  i +  j, and r× r= −k so

2E· S = 0. Hence the total charge is  = 0

E· S = 8330.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Hence, the ellipse and hyperbola are

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part..  is periodic with