• 沒有找到結果。

Section 5.3 The Fundamental Theorem of Calculus

N/A
N/A
Protected

Academic year: 2022

Share "Section 5.3 The Fundamental Theorem of Calculus"

Copied!
1
0
0

加載中.... (立即查看全文)

全文

(1)

Section 5.3 The Fundamental Theorem of Calculus

58. Sketch the region enclosed by the given curves and calculate its area. y = 2x − x2, y = 0.

Solution:

SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 511 46. Area = 1

0

3 =1 441

0= 14− 0 = 14

47. Area = 2

−2(4 − 2)  =

4 −1332

−2= 8 −83

−

−8 +83

= 323

48. Area = 2

0 (2 − 2)  =

21332 0=

4 − 83

− 0 = 43

49. From the graph, it appears that the area is about 60. The actual area is

27

013 =

3 44327

0 = 34 · 81 − 0 = 2434 = 6075. This is 34 of the area of the viewing rectangle.

50. From the graph, it appears that the area is about 13. The actual area is

6 1

−4 =

−3

−3

6 1

=

−1 33

6 1

= − 1

3 · 216 +1 3 = 215

648 ≈ 03318.

51. It appears that the area under the graph is about23 of the area of the viewing rectangle, or about23 ≈ 21. The actual area is

0 sin   = [− cos ]0 = (− cos ) − (− cos 0) = − (−1) + 1 = 2.

52. Splitting up the region as shown, we estimate that the area under the graph is 3 + 14

3 ·3

≈ 18. The actual area is

3

0 sec2  = [tan ]30 =√

3 − 0 =√

3 ≈ 173.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

68. Find the derivative of the function. g(x) =R1+2x

1−2x t sin tdt.

Solution:

512 ¤ CHAPTER 5 INTEGRALS 53.2

−13 =1 442

−1= 4 − 14 = 154 = 375

54.2

6cos   = sin 2

6= 0 −12 = −12

55. () = −4is not continuous on the interval [−2 1], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at

 = 0, so1

−2−4does not exist.

56. () = 4

3 is not continuous on the interval [−1 2], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at

 = 0, so 2

−1

4

3does not exist.

57. () = sec  tan is not continuous on the interval [3 ], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at  = 2, so

3sec  tan  does not exist.

58. () = sec2is not continuous on the interval [0 ], so FTC2 cannot be applied. In fact,  has an infinite discontinuity at

 = 2, so

0 sec2 does not exist.

59. () =3

2

2− 1

2+ 1 =

0 2

2− 1

2+ 1 +

3

0

2− 1

2+ 1 = −

2

0

2− 1

2+ 1 +

3

0

2− 1

2+ 1 ⇒

0() = −(2)2− 1 (2)2+ 1· 

(2) + (3)2− 1 (3)2+ 1· 

(3) = −2 · 42− 1

42+ 1 + 3 ·92− 1 92+ 1

60. () =1+2

1−2

 sin   =

0 1−2

 sin   +

1+2

0  sin   = −

1−2

0

 sin   +

1+2

0

 sin   ⇒

0() = −(1 − 2) sin(1 − 2) · 

(1 − 2) + (1 + 2) sin(1 + 2) · 

(1 + 2)

= 2(1 − 2) sin(1 − 2) + 2(1 + 2) sin(1 + 2)

61.  () =2

2 =

0

2 +

2 0

2 = −

0

2 +

2 0

2 ⇒

0() = −2+ (2)2· 

(2) = −2+ 24

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

76. If f (x) =Rsin x 0

√1 + t2dt and g(y) =Ry

3 f (x)dx, find g00(π6).

Solution:

SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 513 62.  () =

2

arctan   =

0

arctan   +

2

0 arctan   = −

0

arctan   +

2

0

arctan   ⇒

0() = − arctan√

 · 

(√

 ) + arctan 2 · 

(2) = − 1

2√arctan√

 + 2 arctan 2

63.  =sin  cos 

ln(1 + 2)  =

0 cos 

ln(1 + 2)  +

sin  0

ln(1 + 2) 

= −

cos  0

ln(1 + 2)  +

sin  0

ln(1 + 2)  ⇒

0= − ln(1 + 2 cos ) · 

cos  + ln(1 + 2 sin ) · 

sin  = sin  ln(1 + 2 cos ) + cos  ln(1 + 2 sin ) 64. () =

0 (1 − 2)2is increasing when 0() = (1 − 2)2is positive.

Since 2 0, 0()  0 ⇔ 1 − 2 0 ⇔ ||  1, so  is increasing on (−1 1).

65.  = 0

2

2+  + 2 ⇒ 0= 2

2+  + 2 ⇒

00 = (2+  + 2)(2) − 2(2 + 1)

(2+  + 2)2 = 23+ 22+ 4 − 23− 2

(2+  + 2)2 = 2+ 4

(2+  + 2)2 = ( + 4) (2+  + 2)2. The curve  is concave downward when 00 0; that is, on the interval (−4 0).

66. If  () =

1  () , then by FTC1, 0() =  (), and also, 00() = 0().  is concave downward where 00is negative; that is, where 0is negative. The given graph shows that  is decreasing (0 0)on the interval (−1 1).

67.  () =

22 ⇒ 0() = 2, so the slope at  = 2 is 22= 4. The -coordinate of the point on  at  = 2 is

 (2) =2

22 = 0since the limits are equal. An equation of the tangent line is  − 0 = 4( − 2), or  = 4 − 24. 68. () =

3  ()  ⇒ 0() =  (). Since () =sin  0

√1 + 2, 00() = 0() =

1 + sin2 · cos , so 00(6) =

1 + sin2(6) · cos6 =

1 + (12)2·23 = 25 ·23 = 415.

69. By FTC2,4

10()  =  (4) − (1), so 17 = (4) − 12 ⇒ (4) = 17 + 12 = 29.

70. (a) erf() = 2

√

0

−2 ⇒

0

−2 =

√

2 erf()By Property 5 of definite integrals in Section 5.2,

0−2 =

0−2 +

−2, so

−2 =

0

−2 −

0

−2 =

√

2 erf() −

√

2 erf() = 12

 [erf() − erf()].

(b)  = 2erf() ⇒ 0= 22erf() + 2erf0() = 2 + 2· 2

√−2 [by FTC1] = 2 + 2

√.

71. (a) The Fresnel function () = 0 sin

22

has local maximum values where 0 = 0() = sin

22 and

0changes from positive to negative. For   0, this happens when22 = (2 − 1) [odd multiples of ] ⇔

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

78. Use l’Hospital’s Rule to evaluate the limit. lim

x→∞

1 x2

Rx

0 ln(1 + et)dt.

Solution: SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 553

78. lim

→∞

1

2

0

ln(1 + )  = lim

→∞

0

ln(1 + ) 

2

form H

= lim

→∞

ln(1 + ) 2

= limH

→∞

1 + 

2

= lim

→∞

2(1 + ) = lim

→∞



2(1 + ) = lim

→∞

1 2

1

+ 1

 = 1

2(0 + 1) = 1 2

79. By FTC2,4

10()  =  (4) − (1), so 17 = (4) − 12 ⇒ (4) = 17 + 12 = 29.

80. (a) erf() = 2

√

0

−2 ⇒

0

−2 =

√

2 erf()By Property 5 of definite integrals in Section 5.2,

0−2 =

0−2 +

−2, so

−2 =

0

−2 −

0

−2 =

√

2 erf() −

√

2 erf() = 12

 [erf() − erf()].

(b)  = 2erf() ⇒ 0= 22erf() + 2erf0() = 2 + 2· 2

√−2 [by FTC1] = 2 + 2

√.

81. (a) The Fresnel function () = 0 sin

22

has local maximum values where 0 = 0() = sin 22and

0changes from positive to negative. For   0, this happens when 22= (2 − 1) [odd multiples of ] ⇔

2 = 2(2 − 1) ⇔  =√

4 − 2,  any positive integer. For   0, 0changes from positive to negative where

22= 2 [even multiples of ] ⇔ 2= 4 ⇔  = −2√

. 0does not change sign at  = 0.

(b)  is concave upward on those intervals where 00()  0. Differentiating our expression for 0(), we get

00() = cos

22

22

=  cos

22

. For   0, 00()  0where cos(22)  0 ⇔ 0  222 or

2 −12

  22

2 +12

,  any integer ⇔ 0    1 or√

4 − 1   √4 + 1,  any positive integer.

For   0, 00()  0where cos(22)  0 ⇔  2 −32

  22 2 −12

,  any integer ⇔

4 − 3  2 4 − 1 ⇔ √

4 − 3  || √

4 − 1 ⇒ √

4 − 3  − √

4 − 1 ⇒

−√

4 − 3    −√

4 − 1, so the intervals of upward concavity for   0 are

−√

4 − 1 −√

4 − 3,  any positive integer. To summarize:  is concave upward on the intervals (0 1),

−√

3 −1,√

3√ 5,

−√ 7 −√

5,

√7 3,    .

(c) In Maple, we use plot({int(sin(Pi*tˆ2/2),t=0..x),0.2},x=0..2);. Note that Maple recognizes the Fresnel function, calling it FresnelS(x). In Mathematica, we use

Plot[{Integrate[Sin[Pi*tˆ2/2],{t,0,x}],0.2},{x,0,2}]. In Derive, we load the utility file FRESNEL and plot FRESNEL_SIN(x). From the graphs, we see that

0 sin 22

 = 02at  ≈ 074.

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

93. Find a function f and a number a such that 6 +

Z x a

f (t)

t2 dt = 2√

x for all x > 0

Solution:

SECTION 5.3 THE FUNDAMENTAL THEOREM OF CALCULUS ¤ 517 82. (a) If   0, then () =

0  ()  =

0 0  = 0.

If 0 ≤  ≤ 1, then () =

0  ()  =

0   =1 22

0 = 122. If 1   ≤ 2, then

() =

0  ()  =1

0  ()  +

1  ()  = (1) +

1(2 − ) 

= 12(1)2+

2 − 122

1 = 12+

2 −122

− 2 −12

= 2 −122− 1.

If   2, then () =

0  ()  = (2) +

2 0  = 1 + 0 = 1. So

() =











0 if   0

1

22 if 0 ≤  ≤ 1 2 −122− 1 if 1   ≤ 2

1 if   2

(b)

(c)  is not differentiable at its corners at  = 0, 1, and 2.  is differentiable on (−∞ 0), (0 1), (1 2) and (2 ∞).

is differentiable on (−∞ ∞).

83. Using FTC1, we differentiate both sides of 6 +

 ()

2  = 2√

to get  ()

2 = 2 1 2√

 ⇒ () = 32. To find , we substitute  =  in the original equation to obtain 6 +

 ()

2  = 2√

 ⇒ 6 + 0 = 2√

 ⇒

3 =√

 ⇒  = 9.

84.  = 3 ⇒

0 = 3

0 ⇒ []0= 3 []0 ⇒ − 1 = 3(− 1) ⇒  = 3− 2 ⇒

 = ln(3− 2) 85. (a) Let  () =

0 () . Then, by FTC1, 0() =  () =rate of depreciation, so  () represents the loss in value over the interval [0 ].

(b) () = 1

 +

0

 () 

=  +  ()

 represents the average expenditure per unit of  during the interval [0 ], assuming that there has been only one overhaul during that time period. The company wants to minimize average expenditure.

(c) () =1

 +

0

 () 

. Using FTC1, we have 0() = −1

2

 +

0

 () 

 +1

 ().

0() = 0 ⇒  () =  +

0

 ()  ⇒ () = 1

 +

0

 () 

= ().

86. (a) () = 1

0

[ () + ()] . Using FTC1 and the Product Rule, we have

0() = 1

[ () + ()] − 1

2

0

[ () + ()] . Set 0() = 0: 1

[ () + ()] − 1

2

0

[ () + ()]  = 0 ⇒

[ () + ()] −1

0

[ () + ()]  = 0 ⇒ [() + ()] − () = 0 ⇒ () =  () + ().

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Hence, the ellipse and hyperbola are

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part..  is periodic with