• 沒有找到結果。

Section 3.6 Derivatives of Logarithmic Functions

N/A
N/A
Protected

Academic year: 2022

Share "Section 3.6 Derivatives of Logarithmic Functions"

Copied!
1
0
0

加載中.... (立即查看全文)

全文

(1)

Section 3.6 Derivatives of Logarithmic Functions

226 ¤ CHAPTER 3 DIFFERENTIATION RULES

3.6 Derivatives of Logarithmic Functions

1. The differentiation formula for logarithmic functions, 

(log) = 1

 ln , is simplest when  =  because ln  = 1.

2.  () =  ln  −  ⇒ 0() =  ·1

+ (ln ) · 1 − 1 = 1 + ln  − 1 = ln  3.  () = sin(ln ) ⇒ 0() = cos(ln ) · 

ln  = cos(ln ) ·1

 =cos(ln )

4.  () = ln(sin2) = ln(sin )2= 2 ln |sin | ⇒ 0() = 2 · 1

sin · cos  = 2 cot  5.  () =√5

ln  = (ln )15 ⇒ 0() = 15(ln )−45

(ln ) = 1 5(ln )45· 1

 = 1

55 (ln )4

6.  () = ln√5

 = ln 15=15ln  ⇒ 0() = 1 5·1

= 1 5

7.  () = log10(1 + cos ) ⇒ 0() = 1 (1 + cos ) ln 10

(1 + cos ) = − sin  (1 + cos ) ln 10

8.  () = log10

√ ⇒ 0() = 1

√ ln 10



√ = 1

√ ln 10 1

2√ = 1 2(ln 10)

Or: () = log10

 = log1012=12log10 ⇒ 0() =1 2

1

 ln 10= 1 2 (ln 10) 

9. () = ln(−2) = ln  + ln −2= ln  − 2 ⇒ 0() = 1

− 2 10. () =√

1 + ln  ⇒ 0() = 12(1 + ln )−12

(1 + ln ) = 1 2√

1 + ln ·1

 = 1

2√ 1 + ln 

11.  () = (ln )2sin  ⇒ 0() = (ln )2cos  + sin  · 2 ln  ·1

 = ln 

ln  cos  +2 sin 

12. () = ln

 +√

2− 1

⇒ 0() = 1

 +√

2− 1

1 + 

√2− 1

= 1

 +√

2− 1·

√√2− 1 + 

2− 1 = 1

√2− 1

13. () = ln

√

2− 1

= ln  + ln(2− 1)12= ln  +12ln(2− 1) ⇒

0() = 1

+1 2· 1

2− 1· 2 = 1

+ 

2− 1=2− 1 +  · 

(2− 1) = 22− 1

(2− 1)

14.  () = ln 

1 −  ⇒ 0() =(1 − )(1) − (ln )(−1) (1 − )2 ·

 = 1 −  +  ln 

(1 − )2

15.  () = ln ln  ⇒ 0() = 1 ln 

ln  = 1 ln ·1

 = 1

 ln 

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS ¤ 227 16.  = ln

1 +  − 3

 ⇒ 0= 1

1 +  − 3

(1 +  − 3) = 1 − 32 1 +  − 3

17.  () = 2log2 ⇒ 0() = 2 1

 ln 2+ log2 · 2ln 2 = 2

 1

 ln 2+ log2 (ln 2)

 .

Note that log2 (ln 2) = ln 

ln 2(ln 2) = ln by the change of base formula. Thus, 0() = 2

 1

 ln 2+ ln 

 .

18.  = ln(csc  − cot ) ⇒

0= 1

csc  − cot 

(csc  − cot ) = 1

csc  − cot (− csc  cot  + csc2) = csc (csc  − cot ) csc  − cot  = csc  19.  = ln(−+ −) = ln(−(1 + )) = ln(−) + ln(1 + ) = − + ln(1 + ) ⇒

0= −1 + 1

1 + = −1 −  + 1

1 +  = −  1 + 

20. () = ln

2− 2

2+ 2 = ln

2− 2

2+ 2

12

= 1 2ln

2− 2

2+ 2

=12ln(2− 2) −12ln(2+ 2) ⇒

0() =1 2· 1

2− 2 · (−2) −1 2· 1

2+ 2 · (2) = 

2− 2 − 

2+ 2 =(2+ 2) − (2− 2) (2− 2)(2+ 2)

= 3+ 2− 3+ 2

(2− 2)(2+ 2) = 22

4− 4

21.  = tan [ln( + )] ⇒ 0= sec2[ln( + )] · 1

 + ·  = sec2[ln( + )] 

 +  22.  = log2( log5) ⇒

0= 1

( log5)(ln 2)

( log5) = 1 ( log5)(ln 2)

 · 1

 ln 5+ log5

= 1

( log5)(ln 5)(ln 2)+ 1

(ln 2). Note that log5(ln 5) = ln 

ln 5(ln 5) = ln by the change of base formula. Thus, 0= 1

 ln  ln 2+ 1

 ln 2 = 1 + ln 

 ln  ln 2. 23.  =√

 ln  ⇒ 0 =√

 · 1

 + (ln ) 1 2√

 = 2 + ln  2√

 ⇒

00=2√

 (1) − (2 + ln )(1√ ) (2√ )2 = 2√

 − (2 + ln )(1√ )

4 =2 − (2 + ln )

√(4) = − ln  4√

24.  = ln 

1 + ln  ⇒ 0= (1 + ln )(1) − (ln )(1)

(1 + ln )2 = 1

(1 + ln )2

00= −

[(1 + ln )2]

[(1 + ln )2]2 [Reciprocal Rule] = − · 2(1 + ln ) · (1) + (1 + ln )2

2(1 + ln )4

= −(1 + ln )[2 + (1 + ln )]

2(1 + ln )4 = − 3 + ln 

2(1 + ln )3

25.  = ln |sec | ⇒ 0= 1 sec 

sec  = 1

sec sec  tan  = tan  ⇒ 00= sec2

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS ¤ 227 16.  = ln

1 +  − 3

 ⇒ 0= 1

1 +  − 3

(1 +  − 3) = 1 − 32 1 +  − 3

17.  () = 2log2 ⇒ 0() = 2 1

 ln 2+ log2 · 2ln 2 = 2

 1

 ln 2+ log2 (ln 2)

 .

Note that log2 (ln 2) = ln 

ln 2(ln 2) = ln by the change of base formula. Thus, 0() = 2

 1

 ln 2+ ln 

 .

18.  = ln(csc  − cot ) ⇒

0= 1

csc  − cot 

(csc  − cot ) = 1

csc  − cot (− csc  cot  + csc2) = csc (csc  − cot ) csc  − cot  = csc  19.  = ln(−+ −) = ln(−(1 + )) = ln(−) + ln(1 + ) = − + ln(1 + ) ⇒

0= −1 + 1

1 + = −1 −  + 1

1 +  = −  1 + 

20. () = ln

2− 2

2+ 2 = ln

2− 2

2+ 2

12

= 1 2ln

2− 2

2+ 2

=12ln(2− 2) −12ln(2+ 2) ⇒

0() =1 2· 1

2− 2 · (−2) −1 2· 1

2+ 2 · (2) = 

2− 2 − 

2+ 2 =(2+ 2) − (2− 2) (2− 2)(2+ 2)

= 3+ 2− 3+ 2

(2− 2)(2+ 2) = 22

4− 4

21.  = tan [ln( + )] ⇒ 0= sec2[ln( + )] · 1

 + ·  = sec2[ln( + )] 

 +  22.  = log2( log5) ⇒

0= 1

( log5)(ln 2)

( log5) = 1 ( log5)(ln 2)

 · 1

 ln 5+ log5

= 1

( log5)(ln 5)(ln 2)+ 1

(ln 2). Note that log5(ln 5) = ln 

ln 5(ln 5) = ln by the change of base formula. Thus, 0= 1

 ln  ln 2+ 1

 ln 2 = 1 + ln 

 ln  ln 2. 23.  =√

 ln  ⇒ 0 =√

 · 1

 + (ln ) 1 2√

 = 2 + ln  2√

 ⇒

00=2√

 (1) − (2 + ln )(1√ ) (2√ )2 = 2√

 − (2 + ln )(1√ )

4 =2 − (2 + ln )

√(4) = − ln  4√

24.  = ln 

1 + ln  ⇒ 0= (1 + ln )(1) − (ln )(1)

(1 + ln )2 = 1

(1 + ln )2

00= −

[(1 + ln )2]

[(1 + ln )2]2 [Reciprocal Rule] = − · 2(1 + ln ) · (1) + (1 + ln )2

2(1 + ln )4

= −(1 + ln )[2 + (1 + ln )]

2(1 + ln )4 = − 3 + ln 

2(1 + ln )3

25.  = ln |sec | ⇒ 0= 1 sec 

sec  = 1

sec sec  tan  = tan  ⇒ 00= sec2

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

228 ¤ CHAPTER 3 DIFFERENTIATION RULES 26.  = ln(1 + ln ) ⇒ 0= 1

1 + ln ·1

= 1

(1 + ln ) ⇒

00= −

[(1 + ln )]

[(1 + ln )]2 [Reciprocal Rule] = −(1) + (1 + ln )(1)

2(1 + ln )2 = − 1 + 1 + ln 

2(1 + ln )2 = − 2 + ln 

2(1 + ln )2 27.  () = 

1 − ln( − 1) ⇒

0() =

[1 − ln( − 1)] · 1 −  · −1

 − 1 [1 − ln( − 1)]2 =

( − 1)[1 − ln( − 1)] + 

 − 1

[1 − ln( − 1)]2 = − 1 − ( − 1) ln( − 1) +  ( − 1)[1 − ln( − 1)]2

= 2 − 1 − ( − 1) ln( − 1) ( − 1)[1 − ln( − 1)]2

Dom() = { |  − 1  0 and 1 − ln( − 1) 6= 0} = { |   1 and ln( − 1) 6= 1}

=

 |   1 and  − 1 6= 1

= { |   1 and  6= 1 + } = (1 1 + ) ∪ (1 +  ∞)

28.  () =√

2 + ln  = (2 + ln )12 ⇒ 0() = 1

2(2 + ln )−12·1

= 1

2√ 2 + ln  Dom() = { | 2 + ln  ≥ 0} = { | ln  ≥ −2} = { |  ≥ −2} = [−2 ∞).

29.  () = ln(2− 2) ⇒ 0() = 1

2− 2(2 − 2) = 2( − 1)

( − 2). Dom( ) = { | ( − 2)  0} = (−∞ 0) ∪ (2 ∞).

30.  () = ln ln ln  ⇒ 0() = 1 ln ln · 1

ln ·1

.

Dom( ) = { | ln ln   0} = { | ln   1} = { |   } = ( ∞).

31.  () = ln( + ln ) ⇒ 0() = 1

 + ln 

( + ln ) = 1

 + ln 

 1 +1

 .

Substitute 1 for  to get 0(1) = 1 1 + ln 1

 1 +1

1

= 1

1 + 0(1 + 1) = 1 · 2 = 2.

32.  () = cos(ln 2) ⇒ 0() = − sin(ln 2) 

 ln 2= − sin(ln 2) 1

2(2) = −2 sin(ln 2)

 .

Substitute 1 for  to get 0(1) = −2 sin(ln 12)

1 = −2 sin 0 = 0.

33.  = ln(2− 3 + 1) ⇒ 0= 1

2− 3 + 1· (2 − 3) ⇒ 0(3) = 11 · 3 = 3, so an equation of a tangent line at (3 0)is  − 0 = 3( − 3), or  = 3 − 9.

34.  = 2ln  ⇒ 0= 2·1

+ (ln )(2) ⇒ 0(1) = 1 + 0 = 1, so an equation of a tangent line at (1 0) is

 − 0 = 1( − 1), or  =  − 1.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS ¤ 229

35.  () = sin  + ln  ⇒ 0() = cos  + 1.

This is reasonable, because the graph shows that  increases when 0is positive, and 0() = 0when  has a horizontal tangent.

36.  =ln 

 ⇒ 0= (1) − ln 

2 = 1 − ln 

2 .

0(1) = 1 − 0

12 = 1and 0() = 1 − 1

2 = 0 ⇒ equations of tangent lines are  − 0 = 1( − 1) or  =  − 1 and  − 1 = 0( − ) or  = 1.

37.  () =  + ln(cos ) ⇒ 0() =  + 1

cos · (− sin ) =  − tan .

0(4) = 6 ⇒  − tan4 = 6 ⇒  − 1 = 6 ⇒  = 7.

38.  () = log(32− 2) ⇒ 0() = 1

(32− 2) ln · 6.

0(1) = 3 ⇒ 1

ln · 6 = 3 ⇒ 2 = ln  ⇒  = 2. 39.  = (2 + 1)5(4− 3)6 ⇒ ln  = ln

(2 + 1)5(4− 3)6

⇒ ln  = 5 ln(2 + 1) + 6 ln(4− 3) ⇒ 1

0= 5 · 1

2 + 1· 2 + 6 · 1

4− 3· 43

0= 

 10

2 + 1+ 243

4− 3

= (2 + 1)5(4− 3)6

 10

2 + 1+ 243

4− 3

 .

[The answer could be simplified to 0= 2(2 + 1)4(4− 3)5(294+ 123− 15), but this is unnecessary.]

40.  =√

 2

2+ 110

⇒ ln  = ln√

 + ln 2+ ln(2+ 1)10 ⇒ ln  = 12ln  + 2+ 10 ln(2+ 1) ⇒ 1

0=1 2·1

+ 2 + 10 · 1

2+ 1· 2 ⇒ 0=√

 2(2+ 1)10

 1

2+ 2 + 20

2+ 1

41.  =

 − 1

4+ 1 ⇒ ln  = ln

  − 1

4+ 1

12

⇒ ln  = 1

2ln( − 1) −1

2ln(4+ 1) ⇒ 1

0=1 2

1

 − 1−1 2

1

4+ 1· 43 ⇒ 0= 

 1

2( − 1)− 23

4+ 1

⇒ 0=

 − 1

4+ 1

 1

2 − 2− 23

4+ 1

42.  =√

 2−( + 1)23 ⇒ ln  = ln

122−( + 1)23

ln  =12ln  + (2− ) +23ln( + 1) ⇒ 1

0=1 2·1

+ 2 − 1 +2 3· 1

 + 1 ⇒

0= 

 1

2+ 2 − 1 + 2 3 + 3

⇒ 0=√

 2−( + 1)23

 1

2+ 2 − 1 + 2 3 + 3

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

230 ¤ CHAPTER 3 DIFFERENTIATION RULES

43.  =  ⇒ ln  = ln  ⇒ ln  =  ln  ⇒ 0 = (1) + (ln ) · 1 ⇒ 0= (1 + ln ) ⇒

0= (1 + ln )

44.  = cos  ⇒ ln  = ln cos  ⇒ ln  = cos  ln  ⇒ 1

 0= cos  ·1

+ ln  · (− sin ) ⇒

0=  cos 

 − ln  sin 

⇒ 0= cos  cos 

 − ln  sin  45.  = sin  ⇒ ln  = ln sin  ⇒ ln  = sin  ln  ⇒ 0

 = (sin ) ·1

+ (ln )(cos ) ⇒

0= 

sin 

 + ln  cos 

⇒ 0= sin 

sin 

 + ln  cos 

46.  =√

⇒ ln  = ln√

⇒ ln  =  ln 12 ⇒ ln  = 12 ln  ⇒ 1

0= 1 2 ·1

+ ln  ·1

2 ⇒

0= 1

2+12ln 

⇒ 0=12

(1 + ln )

47.  = (cos ) ⇒ ln  = ln(cos ) ⇒ ln  =  ln cos  ⇒ 1

 0=  · 1

cos · (− sin ) + ln cos  · 1 ⇒

0= 

ln cos  − sin  cos 

⇒ 0= (cos )(ln cos  −  tan )

48.  = (sin )ln  ⇒ ln  = ln(sin )ln  ⇒ ln  = ln  · ln sin  ⇒ 1

0= ln  · 1

sin · cos  + ln sin  ·1

 ⇒

0= 

ln  ·cos 

sin  +ln sin 

⇒ 0= (sin )ln 

ln  cot  +ln sin 

49.  = (tan )1 ⇒ ln  = ln(tan )1 ⇒ ln  = 1

ln tan  ⇒ 1

0 = 1

· 1

tan · sec2 + ln tan  ·

−1

2

⇒ 0= 

sec2

 tan −ln tan 

2

0= (tan )1

sec2

 tan −ln tan 

2

or 0= (tan )1·1

csc  sec  −ln tan 

50.  = (ln )cos  ⇒ ln  = cos  ln(ln ) ⇒ 0

 = cos  · 1 ln · 1

+ (ln ln )(− sin ) ⇒

0= (ln )cos  cos 

 ln − sin  ln ln  51.  = ln(2+ 2) ⇒ 0= 1

2+ 2

(2+ 2) ⇒ 0= 2 + 20

2+ 2 ⇒ 20+ 20= 2 + 20

20+ 20− 20= 2 ⇒ (2+ 2− 2)0= 2 ⇒ 0= 2

2+ 2− 2

52.=  ⇒  ln  =  ln  ⇒  ·1

+ (ln ) · 0=  ·1

 · 0+ ln  ⇒ 0ln  −

0= ln  −

 ⇒

0= ln  − 

ln  − 

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 231 53.  () = ln( − 1) ⇒ 0() = 1

( − 1) = ( − 1)−1 ⇒ 00() = −( − 1)−2 ⇒ 000() = 2( − 1)−3

(4)() = −2 · 3( − 1)−4 ⇒ · · · ⇒ ()() = (−1)−1· 2 · 3 · 4 · · · ( − 1)( − 1)−= (−1)−1( − 1)!

( − 1) 54.  = 8ln , so 9 = 80= 8(87ln  + 7). But the eighth derivative of 7is 0, so we now have

8(87ln ) = 7(8 · 76ln  + 86) = 7(8 · 76ln ) = 6(8 · 7 · 65ln ) = · · · = (8! 0ln ) = 8!

55. If () = ln (1 + ), then 0() = 1

1 + , so 0(0) = 1.

Thus, lim

→0

ln(1 + )

 = lim

→0

 ()

 = lim

→0

 () − (0)

 − 0 = 0(0) = 1.

56. Let  = . Then  = , and as  → ∞,  → ∞.

Therefore, lim

→∞

 1 +

= lim

→∞

 1 + 1



=

lim→∞

 1 + 1

= by Equation 6.

3.7 Rates of Change in the Natural and Social Sciences

1. (a)  = () = 3− 82+ 24(in meters) ⇒ () = 0() = 32− 16 + 24 (in ms) (b) (1) = 3(1)2− 16(1) + 24 = 11 ms

(c) The particle is at rest when () = 0. 32− 16 + 24 = 0 ⇒ −(−16) ±

(−16)2− 4(3)(24)

2(3) =16 ±√

−32

6 .

The negative discriminant indicates that  is never 0 and that the particle never rests.

(d) From parts (b) and (c), we see that ()  0 for all , so the particle is always moving in the positive direction.

(e) The total distance traveled during the first 6 seconds (since the particle doesn’t change direction) is

 (6) − (0) = 72 − 0 = 72 m.

(f )

(g) () = 32− 16 + 24 ⇒

() = 0() = 6 − 16 (in (ms)s or ms2).

(1) = 6(1) − 16 = −10 ms2

(h)

(i) The particle is speeding up when  and  have the same sign.  is always positive and  is positive when 6 − 16  0 ⇒

 83, so the particle is speeding up when   83. It is slowing down when  and  have opposite signs; that is, when 0 ≤  83.

2. (a)  = () = 9

2+ 9 (in meters) ⇒ () = 0() = (2+ 9)(9) − 9(2)

(2+ 9)2 = −92+ 81

(2+ 9)2 = −9(2− 9)

(2+ 9)2 (in ms) (b) (1) = −9(1 − 9)

(1 + 9)2 = 72

100= 072 ms

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 231 53.  () = ln( − 1) ⇒ 0() = 1

( − 1) = ( − 1)−1 ⇒ 00() = −( − 1)−2 ⇒ 000() = 2( − 1)−3

(4)() = −2 · 3( − 1)−4 ⇒ · · · ⇒ ()() = (−1)−1· 2 · 3 · 4 · · · ( − 1)( − 1)−= (−1)−1( − 1)!

( − 1) 54.  = 8ln , so 9 = 80= 8(87ln  + 7). But the eighth derivative of 7is 0, so we now have

8(87ln ) = 7(8 · 76ln  + 86) = 7(8 · 76ln ) = 6(8 · 7 · 65ln ) = · · · = (8! 0ln ) = 8!

55. If () = ln (1 + ), then 0() = 1

1 + , so 0(0) = 1.

Thus, lim

→0

ln(1 + )

 = lim

→0

 ()

 = lim

→0

 () − (0)

 − 0 = 0(0) = 1.

56. Let  = . Then  = , and as  → ∞,  → ∞.

Therefore, lim

→∞

 1 +

= lim

→∞

 1 + 1



=

lim→∞

 1 + 1

= by Equation 6.

3.7 Rates of Change in the Natural and Social Sciences

1. (a)  = () = 3− 82+ 24(in meters) ⇒ () = 0() = 32− 16 + 24 (in ms) (b) (1) = 3(1)2− 16(1) + 24 = 11 ms

(c) The particle is at rest when () = 0. 32− 16 + 24 = 0 ⇒ −(−16) ±

(−16)2− 4(3)(24)

2(3) =16 ±√

−32

6 .

The negative discriminant indicates that  is never 0 and that the particle never rests.

(d) From parts (b) and (c), we see that ()  0 for all , so the particle is always moving in the positive direction.

(e) The total distance traveled during the first 6 seconds (since the particle doesn’t change direction) is

 (6) − (0) = 72 − 0 = 72 m.

(f )

(g) () = 32− 16 + 24 ⇒

() = 0() = 6 − 16 (in (ms)s or ms2).

(1) = 6(1) − 16 = −10 ms2

(h)

(i) The particle is speeding up when  and  have the same sign.  is always positive and  is positive when 6 − 16  0 ⇒

 83, so the particle is speeding up when   83. It is slowing down when  and  have opposite signs; that is, when 0 ≤  83.

2. (a)  = () = 9

2+ 9 (in meters) ⇒ () = 0() = (2+ 9)(9) − 9(2)

(2+ 9)2 = −92+ 81

(2+ 9)2 = −9(2− 9)

(2+ 9)2 (in ms) (b) (1) = −9(1 − 9)

(1 + 9)2 = 72

100= 072 ms

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Evaluate the surface

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part..  is periodic with