• 沒有找到結果。

Section 4.1 Maximum and Minimum Values

N/A
N/A
Protected

Academic year: 2022

Share "Section 4.1 Maximum and Minimum Values"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 4.1 Maximum and Minimum Values

45. Find the critical numbers of the function. f (θ) = 2 cos θ + sin2θ.

Solution:

SECTION 4.1 MAXIMUM AND MINIMUM VALUES ¤ 305 35. () =  − 1

2−  + 1 ⇒

0() = (2−  + 1)(1) − ( − 1)(2 − 1)

(2−  + 1)2 =2−  + 1 − (22− 3 + 1)

(2−  + 1)2 = −2+ 2

(2−  + 1)2 = (2 − ) (2−  + 1)2.

0() = 0 ⇒  = 0, 2. The expression 2−  + 1 is never equal to 0, so 0()exists for all real numbers.

The critical numbers are 0 and 2.

36. () =  − 1

2+ 4 ⇒ 0() = (2+ 4)(1) − ( − 1)(2)

(2+ 4)2 = 2+ 4 − 22+ 2

(2+ 4)2 = −2+ 2 + 4 (2+ 4)2 .

0() = 0 ⇒  = −2 ±√ 4 + 16

−2 = 1 ±√

5. The critical numbers are 1 ±√

5. [0()exists for all real numbers.]

37. () = 34− 214 ⇒ 0() = 34−1424−34=14−34(312− 2) =3√

 − 2 4√4

3 .

0() = 0 ⇒ 3√

 = 2 ⇒ √

 =23 ⇒  =49. 0()does not exist at  = 0, so the critical numbers are 0 and49.

38. () =√3

4 − 2= (4 − 2)13 ⇒ 0() = 13(4 − 2)−23(−2) = −2

3(4 − 2)23. 0() = 0 ⇒  = 0.

0(±2) do not exist. Thus, the three critical numbers are −2, 0, and 2.

39.  () = 45( − 4)2

0() = 45· 2( − 4) + ( − 4)2·45−15= 15−15( − 4)[5 ·  · 2 + ( − 4) · 4]

=( − 4)(14 − 16)

515 = 2( − 4)(7 − 8) 515

0() = 0 ⇒  = 4,87. 0(0)does not exist. Thus, the three critical numbers are 0,87, and 4.

40. () = 4 − tan  ⇒ 0() = 4 − sec2. 0() = 0 ⇒ sec2 = 4 ⇒ sec  = ±2 ⇒ cos  = ±12

 =3 + 2, 53 + 2, 23 + 2, and 43 + 2are critical numbers.

Note: The values of  that make 0()undefined are not in the domain of .

41.  () = 2 cos  + sin2 ⇒ 0() = −2 sin  + 2 sin  cos . 0() = 0 ⇒ 2 sin  (cos  − 1) = 0 ⇒ sin  = 0 or cos  = 1 ⇒  =  [ an integer] or  = 2. The solutions  =  include the solutions  = 2, so the critical numbers are  = .

42. () = 3 − arcsin  ⇒ 0() = 3 − 1

√1 − 2. 0() = 0 ⇒ 3 = 1

√1 − 2 ⇒ √

1 − 2=13 ⇒ 1 − 2=19 ⇒ 2= 89 ⇒  = ±23

√2 ≈ ±094, both in the domain of , which is [−1 1].

43.  () = 2−3 ⇒ 0() = 2(−3−3) + −3(2) = −3(−3 + 2). 0() = 0 ⇒  = 0,23

[−3is never equal to 0]. 0()always exists, so the critical numbers are 0 and23.

44.  () = −2ln  ⇒ 0() = −2(1) + (ln )(−2−3) = −3− 2−3ln  = −3(1 − 2 ln ) = 1 − 2 ln 

3 .

0() = 0 ⇒ 1 − 2 ln  = 0 ⇒ ln  =12 ⇒  = 12≈ 165. 0(0)does not exist, but 0 is not in the domain of , so the only critical number is√

.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

50. A formula for the derivative of a function f is given. How many critical numbers does f have?

f0(x) = 100 cos2x 10 + x2 − 1 Solution:

306 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

45.The graph of 0() = 5−01||sin  − 1 has 10 zeros and exists everywhere, so  has 10 critical numbers.

46.A graph of 0() = 100 cos2

10 + 2 − 1 is shown. There are 7 zeros between 0 and 10, and 7 more zeros since 0is an even function.

0exists everywhere, so  has 14 critical numbers.

47. () = 32− 12 + 5, [0 3]. 0() = 6 − 12 = 0 ⇔  = 2. Applying the Closed Interval Method, we find that

 (0) = 5, (2) = −7, and (3) = −4. So (0) = 5 is the absolute maximum value and (2) = −7 is the absolute minimum value.

48. () = 3− 3 + 1, [0 3]. 0() = 32− 3 = 0 ⇔  = ±1, but −1 is not in [0 3]. (0) = 1, (1) = −1, and

 (3) = 19. So (3) = 19 is the absolute maximum value and (1) = −1 is the absolute minimum value.

49. () = 23− 32− 12 + 1, [−2 3]. 0() = 62− 6 − 12 = 6(2−  − 2) = 6( − 2)( + 1) = 0 ⇔

 = 2 −1. (−2) = −3, (−1) = 8, (2) = −19, and (3) = −8. So (−1) = 8 is the absolute maximum value and

 (2) = −19 is the absolute minimum value.

50.3− 62+ 5, [−3 5]. 0() = 32− 12 = 3( − 4) = 0 ⇔  = 0, 4. (−3) = −76, (0) = 5, (4) = −27, and (5) = −20. So (0) = 5 is the absolute maximum value and (−3) = −76 is the absolute minimum value.

51. () = 34− 43− 122+ 1, [−2 3]. 0() = 123− 122− 24 = 12(2−  − 2) = 12( + 1)( − 2) = 0 ⇔

 = −1, 0, 2. (−2) = 33, (−1) = −4, (0) = 1, (2) = −31, and (3) = 28. So (−2) = 33 is the absolute maximum value and (2) = −31 is the absolute minimum value.

52. () = (2− 4)3, [−2 3]. 0() = 3(2− 4)2(2) = 6( + 2)2( − 2)2= 0 ⇔  = −2, 0, 2. (±2) = 0,

 (0) = −64, and (3) = 53 = 125. So (3) = 125 is the absolute maximum value and (0) = −64 is the absolute minimum value.

53. () =  +1

, [02 4]. 0() = 1 − 1

2 =2− 1

2 =( + 1)( − 1)

2 = 0 ⇔  = ±1, but  = −1 is not in the given interval, [02 4]. 0()does not exist when  = 0, but 0 is not in the given interval, so 1 is the only critical nuumber.

 (02) = 52, (1) = 2, and (4) = 425. So (02) = 52 is the absolute maximum value and (1) = 2 is the absolute minimum value.

54. () = 

2−  + 1, [0 3].

0() = (2−  + 1) − (2 − 1)

(2−  + 1)2 =2−  + 1 − 22+ 

(2−  + 1)2 = 1 − 2

(2−  + 1)2 =(1 + )(1 − )

(2−  + 1)2 = 0 ⇔

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

60. Find the absolute maximum and absolute minimum values of f on the given interval.

f (x) = ex

1 + x2, [0, 3]

Solution:

332 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION 60. () = 

1 + 2, [0 3]. 0() =(1 + 2)− (2)

(1 + 2)2 =(2− 2 + 1)

(1 + 2)2 = ( − 1)2

(1 + 2)2 . 0() = 0 ⇒ ( − 1)2= 0 ⇔  = 1. 0()exists for all real numbers since 1 + 2is never equal to 0. (0) = 1,

 (1) = 2  1359, and (3) = 310  2009. So (3) = 310is the absolute maximum value and (0) = 1 is the absolute minimum value.

61. () = 2 cos  + sin 2, [0, 2].

0() = −2 sin  + cos 2 · 2 = −2 sin  + 2(1 − 2 sin2) = −2(2 sin2 + sin  − 1) = −2(2 sin  − 1)(sin  + 1).

0() = 0 ⇒ sin  = 12or sin  = −1 ⇒  = 6. (0) = 2, (6) =√ 3 +12

3 =32

3  260, and (2) = 0.

So (6) =32

3is the absolute maximum value and (2) = 0is the absolute minimum value.

62. () = 1 + cos2, [4 ]. 0() = 2 cos (− sin ) = −2 sin  cos  = − sin 2. 0() = 0 ⇒ − sin 2 = 0 ⇒

2 =  ⇒  = 2 . Only  = 2 [ = 1] is in the interval (4, ). (4) = 1 +

 √2 2

2

=3 2,

 (2) = 1 + 02 = 1, and () = 1 + (−1)2= 2. So () = 2 is the absolute maximum value and (2) = 1 is the absolute minimum value.

63. () = −2ln , 1

2 4. 0() = −2·1

+ (ln )(−2−3) = −3− 2−3ln  = −3(1 − 2 ln ) = 1 − 2 ln 

3 .

0() = 0 ⇔ 1 − 2 ln  = 0 ⇔ 2 ln  = 1 ⇔ ln  = 12 ⇔  = 12≈ 165. 0()does not exist when  = 0, which is not in the given interval,1

2 4. 1

2

= ln 12

(12)2 =ln 1 − ln 2

14 = −4 ln 2 ≈ −2773,

 (12) = ln 12 (12)2 =12

 = 1

2 ≈ 0184, and (4) = ln 4 42 = ln 4

16 ≈ 0087. So (12) = 1

2 is the absolute maximum value and 1

2

= −4 ln 2 is the absolute minimum value.

64. () = 2, [−3 1]. 0() = 21 2

+ 2(1) = 21

2 + 1. 0() = 0 ⇔ 12 + 1 = 0 ⇔  = −2.

 (−3) = −3−32≈ −0669, (−2) = −2−1≈ −0736, and (1) = 12≈ 1649. So (1) = 12is the absolute maximum value and (−2) = −2 is the absolute minimum value.

65. () = ln(2+  + 1), [−1 1]. 0() = 1

2+  + 1· (2 + 1) = 0 ⇔  = −12. Since 2+  + 1  0for all , the domain of  and 0is . (−1) = ln 1 = 0, 

12

= ln34  −029, and (1) = ln 3  110. So (1) = ln 3  110 is

the absolute maximum value and 

12

= ln34  −029 is the absolute minimum value.

66. () =  − 2 tan−1, [0 4]. 0() = 1 − 2 · 1

1 + 2 = 0 ⇔ 1 = 2

1 + 2 ⇔ 1 + 2= 2 ⇔ 2= 1 ⇔

 = ±1. (0) = 0, (1) = 1 −2 ≈ −057, and (4) = 4 − 2 tan−14 ≈ 1 35. So (4) = 4 − 2 tan−14is the absolute maximum value and (1) = 1 −2 is the absolute minimum value.

° 2021 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

63. Find the absolute maximum and absolute minimum values of f on the given interval.

f (x) = x−2ln x, [1 2, 4]

Solution:

SECTION 4.1 MAXIMUM AND MINIMUM VALUES ¤ 307

 = ±1, but  = −1 is not in the given interval, [0 3]. (0) = 0, (1) = 1, and (3) = 37. So (1) = 1 is the absolute maximum value and (0) = 0 is the absolute minimum value.

55. () =  −√3

, [−1 4]. 0() = 1 − 13−23= 1 − 1

323. 0() = 0 ⇔ 1 = 1

323 ⇔ 23=1

3 ⇔

 = ±

1 3

32

= ±

1

27 = ± 1 3√

3 = ±

√3

9 . 0()does not exist when  = 0. (−1) = 0, (0) = 0,

 −1 3√

3

= −1 3√

3−−1

√3 = −1 + 3 3√

3 =2√ 3

9 ≈ 03849, 

 1 3√

3

= 1

3√ 3− 1

√3 = −2√ 3 9 , and

 (4) = 4 −√3

4 ≈ 2413. So (4) = 4 −√3

4is the absolute maximum value and 

 √3 9

= −2√ 3

9 is the absolute minimum value.

56. () =

√

1 + 2, [0 2]. 0() = (1 + 2)(1(2√

 )) −√

 (2)

(1 + 2)2 =(1 + 2) − 2√

√

 (2) 2√

 (1 + 2)2 = 1 − 32 2√

 (1 + 2)2.

0() = 0 ⇔ 1 − 32= 0 ⇔ 2 =1

3 ⇔  = ± 1

√3, but  = − 1

√3is not in the given interval, [0 2]. 0()does

not exist when  = 0, which is an endpoint. (0) = 0, 

 1

√3

= 1√4 3

1 + 13= 3−14 43 =334

4 ≈ 0570, and

 (2) =

√2

5 ≈ 0283. So 

 1

√3

=334

4 is the absolute maximum value and (0) = 0 is the absolute minimum value.

57. () = 2 cos  + sin 2, [0, 2].

0() = −2 sin  + cos 2 · 2 = −2 sin  + 2(1 − 2 sin2) = −2(2 sin2 + sin  − 1) = −2(2 sin  − 1)(sin  + 1).

0() = 0 ⇒ sin  = 12 or sin  = −1 ⇒  =6. (0) = 2, (6) =√ 3 +12

3 =32

3 ≈ 260, and (2) = 0.

So (6) =32

3is the absolute maximum value and (2) = 0is the absolute minimum value.

58. () =  + cot(2), [4 74]. 0() = 1 − csc2(2) ·12.

0() = 0 ⇒ 12csc2(2) = 1 ⇒ csc2(2) = 2 ⇒ csc(2) = ±√

2 ⇒ 12 =4 or12 = 34

4 ≤  ≤ 74812 ≤78 and csc(2) 6= −√

2in the last interval

⇒  = 2 or  = 32 .



4

=4 + cot8 ≈ 320, 

2

=2 + cot4 =2 + 1 ≈ 257, 3

2

= 32 + cot32 =32 − 1 ≈ 371, and

7

4

=74 + cot78 ≈ 308. So 3

2

= 32 − 1 is the absolute maximum value and 

2

= 2 + 1is the absolute minimum value.

59. () = −2ln , 1

2 4. 0() = −2·1

+ (ln )(−2−3) = −3− 2−3ln  = −3(1 − 2 ln ) = 1 − 2 ln 

3 .

0() = 0 ⇔ 1 − 2 ln  = 0 ⇔ 2 ln  = 1 ⇔ ln  = 12 ⇔  = 12≈ 165. 0()does not exist when  = 0, which is not in the given interval,1

2 4. 1 2

= ln 12

(12)2 = ln 1 − ln 2

14 = −4 ln 2 ≈ −2773,

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

308 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION



12

= ln 12 (12)2 =12

 = 1

2 ≈ 0184, and (4) = ln 4 42 = ln 4

16 ≈ 0087. So (12) = 1

2 is the absolute maximum value and 1

2

= −4 ln 2 is the absolute minimum value.

60.  () = 2, [−3 1]. 0() = 21 2

+ 2(1) = 21

2 + 1. 0() = 0 ⇔ 12 + 1 = 0 ⇔  = −2.

 (−3) = −3−32≈ −0669, (−2) = −2−1≈ −0736, and (1) = 12≈ 1649. So (1) = 12is the absolute maximum value and (−2) = −2 is the absolute minimum value.

61.  () = ln(2+  + 1), [−1 1]. 0() = 1

2+  + 1 · (2 + 1) = 0 ⇔  = −12. Since 2+  + 1  0for all , the domain of  and 0is R. (−1) = ln 1 = 0, 

12

= ln34 ≈ −029, and (1) = ln 3 ≈ 110. So (1) = ln 3 ≈ 110 is the absolute maximum value and 

12

= ln34 ≈ −029 is the absolute minimum value.

62.  () =  − 2 tan−1, [0 4]. 0() = 1 − 2 · 1

1 + 2 = 0 ⇔ 1 = 2

1 + 2 ⇔ 1 + 2= 2 ⇔ 2= 1 ⇔

 = ±1. (0) = 0, (1) = 1 −2 ≈ −057, and (4) = 4 − 2 tan−14 ≈ 1 35. So (4) = 4 − 2 tan−14is the absolute maximum value and (1) = 1 −2 is the absolute minimum value.

63.  () = (1 − ), 0 ≤  ≤ 1,   0,   0.

0() = · (1 − )−1(−1) + (1 − )· −1= −1(1 − )−1[ · (−1) + (1 − ) · ]

= −1(1 − )−1( −  − )

At the endpoints, we have (0) = (1) = 0 [the minimum value of  ]. In the interval (0 1), 0() = 0 ⇔  = 

 + 

 

 + 

=

 

 + 

 1 − 

 + 

=  ( + )

 +  − 

 + 

= 

( + )· 

( + ) =  ( + )+. So 

 

 + 

= 

( + )+ is the absolute maximum value.

64. The graph of () =

1 + 5 − 3 indicates that 0() = 0at  ≈ ±13 and that 0()does not exist at  ≈ −21, −02, and 23. Those five values of  are the critical numbers of .

65. (a) From the graph, it appears that the absolute maximum value is about

 (−077) = 219, and the absolute minimum value is about (077) = 181.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

66. Find the absolute maximum and absolute minimum values of f on the given interval.

f (x) = x − 2 tan−1x, [0, 4]

Solution:

308 ¤ CHAPTER 4 APPLICATIONS OF DIFFERENTIATION



12

= ln 12 (12)2 =12

 = 1

2 ≈ 0184, and (4) = ln 4 42 = ln 4

16 ≈ 0087. So (12) = 1

2 is the absolute maximum value and 1

2

= −4 ln 2 is the absolute minimum value.

60. () = 2, [−3 1]. 0() = 21 2

+ 2(1) = 21

2 + 1. 0() = 0 ⇔ 12 + 1 = 0 ⇔  = −2.

 (−3) = −3−32≈ −0669, (−2) = −2−1≈ −0736, and (1) = 12≈ 1649. So (1) = 12is the absolute maximum value and (−2) = −2 is the absolute minimum value.

61. () = ln(2+  + 1), [−1 1]. 0() = 1

2+  + 1 · (2 + 1) = 0 ⇔  = −12. Since 2+  + 1  0for all , the domain of  and 0is R. (−1) = ln 1 = 0, 

12

= ln34 ≈ −029, and (1) = ln 3 ≈ 110. So (1) = ln 3 ≈ 110 is the absolute maximum value and 

12

= ln34 ≈ −029 is the absolute minimum value.

62. () =  − 2 tan−1, [0 4]. 0() = 1 − 2 · 1

1 + 2 = 0 ⇔ 1 = 2

1 + 2 ⇔ 1 + 2 = 2 ⇔ 2= 1 ⇔

 = ±1. (0) = 0, (1) = 1 −2 ≈ −057, and (4) = 4 − 2 tan−14 ≈ 1 35. So (4) = 4 − 2 tan−14is the absolute maximum value and (1) = 1 −2 is the absolute minimum value.

63. () = (1 − ), 0 ≤  ≤ 1,   0,   0.

0() = · (1 − )−1(−1) + (1 − )· −1= −1(1 − )−1[ · (−1) + (1 − ) · ]

= −1(1 − )−1( −  − )

At the endpoints, we have (0) = (1) = 0 [the minimum value of  ]. In the interval (0 1), 0() = 0 ⇔  = 

 + 

 

 + 

=

 

 + 

 1 − 

 + 

=  ( + )

 +  − 

 + 

= 

( + )· 

( + ) =  ( + )+. So 

 

 + 

= 

( + )+ is the absolute maximum value.

64. The graph of () =

1 + 5 − 3 indicates that 0() = 0at  ≈ ±13 and that 0()does not exist at  ≈ −21, −02, and 23. Those five values of  are the critical numbers of .

65. (a) From the graph, it appears that the absolute maximum value is about

 (−077) = 219, and the absolute minimum value is about (077) = 181.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Evaluate the surface

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part..  is periodic with