• 沒有找到結果。

Section 15.4 Applications of Double Integrals 8. Find the mass and center of mass of the lamina that occupies the region

N/A
N/A
Protected

Academic year: 2022

Share "Section 15.4 Applications of Double Integrals 8. Find the mass and center of mass of the lamina that occupies the region"

Copied!
1
0
0

加載中.... (立即查看全文)

全文

(1)

Section 15.4 Applications of Double Integrals

8. Find the mass and center of mass of the lamina that occupies the region D and has the given density function ρ.

D is the triangular region enclosed by the lines y = 0, y = 2x, and x + 2y = 1; ρ(x, y) = x Solution:

SECTION 15.4 APPLICATIONS OF DOUBLE INTEGRALS ¤ 553 5. =2

0

3−

2( + )   =2 0

 +122=3−

=2 =2 0

(3 − ) +12(3 − )2122182



=2 0

−982+92

 =

98

1

33 +922

0= 6,

=2 0

3−

2 (2+ )   =2 0

2 +122=3−

=2  =2 0

9

2 −983

 =92,

=2 0

3−

2 ( + 2)   =2 0

1

22+133=3−

=2  =2 0

9 −92 = 9.

Hence  = 6, ( ) =



 

=

3 43

2

 .

6.Here  =

( ) | 0 ≤  ≤ 25 2 ≤  ≤ 1 − 2.

 =25 0

1−2

2    =25 0

1

22=1−2

=2  = 1225 0

(1 − 2)2−1 22



=1225 0

15

42− 4 + 1

 = 125

43− 22+ 25 0 =122

25258 +25

=252,

=25 0

1−2

2  ·    =25 0

1

33=1−2

=2  = 1325 0

(1 − 2)3−1

23



= 1325 0

−6583+ 122− 6 + 1

 = 13

65324+ 43− 32+ 25 0 =13

25013 +125321225+25

= 75031,

=25 0

1−2

2  ·    =25 0 1

22=1−2

=2  = 1225 0 15

42− 4 + 1



=1225 0

15

43− 42+ 

 = 1215

164433+12225 0 = 123

12537532 +252

=7507 . Hence  =252, ( ) =31750

2257750225

=31 60607.

7.  =1

−1

1−2

0    = 1

−1

1

22=1−2

=0  =121

−1(1 − 2)2 =121

−1(1 − 22+ 4) 

=12

 −233+1551

−1=12

1 −23 +15 + 1 −23+15

=158,

=1

−1

1−2

0    = 1

−1

1

22=1−2

=0  =121

−1 (1 − 2)2 =121

−1( − 23+ 5) 

= 121

22124+1661

−1=121

212+1612+1216

= 0,

=1

−1

1−2

0 2  = 1

−1

1

33=1−2

=0  = 131

−1(1 − 2)3 = 131

−1(1 − 32+ 34− 6) 

=13

 − 3+3551771

−1=13

1 − 1 +3517 + 1 − 1 +3517

= 10532.

Hence  =158, ( ) =

032105815

= 047

.

8.The boundary curves intersect when  + 2 = 2 ⇔ 2−  − 2 = 0 ⇔  = −1,  = 2. Thus here

 =

( ) | −1 ≤  ≤ 2 2≤  ≤  + 2 .

 =2

−1

+2

2 2  = 2

−12

=+2

=2  = 2

−1(3+ 22− 4) 

= 1

44+2331552

−1= 44

15+1360

= 6320,

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

13. A lamina occupies the part of the disk x2+ y2 ≤ 1 in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis.

Solution:

554 ¤ CHAPTER 15 MULTIPLE INTEGRALS

=2

−1

+2

2 3  = 2

−13

=+2

=2  = 2

−1(4+ 23− 5) 

= 1

55+1241662

−1= 56 15152

= 185,

=2

−1

+2

2 2   = 2

−121

22=+2

=2  =122

−12(2+ 4 + 4 − 4) 

=122

−1(4+ 43+ 42− 6)  = 121

55+ 4+4331772

−1=121552

105 +10541

= 53170.

Hence  = 6320, ( ) =

185

6320531706320

=8

711849 .

9.  =1 0

−

0    =1 0 1

22=−

=0  = 121 0 

−2

 =121

0 −2

integrate by parts with

 =   = −2

=12

14(2 + 1)−21 0= −18

3−2− 1

=1838−2,

=1 0

−

02   =1 021

22=−

=0  =121

02−2 [integrate by parts twice]

=12

14

22+ 2 + 1

−21 0= −18

5−2− 1

= 1858−2,

=1 0

−

0 2  =1 0 1

33=−

=0  =131

0 −3

=13

19(3 + 1)−31 0= −271

4−3− 1

=271274−3.

Hence  = 18

1 − 3−2, ( ) =

1

8

1 − 5−2

1

8(1 − 3−2)

1 27

1 − 4−3

1

8(1 − 3−2)

=

2− 5

2− 3 8

3− 4 27 (3− 3)

 .

10.Note that cos  ≥ 0 for −2 ≤  ≤ 2.

 =2

−2

cos 

0    =2

−2

1

22=cos 

=0  =122

−2cos2  =121

2 +14sin 22

−2=4,

=2

−2

cos 

0    =2

−21

22=cos 

=0  =122

−2 cos2 

integrate by parts with

 =   = cos2 

=12

1

2 +14sin 22

−2−2

−2

1

2 +14sin 2



=12

1

82182−1

4218cos 22

−2

= 12 0 −1

162+18161218

= 0,

=2

−2

cos 

02  =2

−2

1

33=cos 

=0  =132

−2cos3  =132

−2(1 − sin2) cos  

[substitute  = sin  ⇒  = cos  ]

= 13

sin  −13sin32

−2=13

1 −13+ 1 −13

=49.

Hence  = 4, ( ) = 0449

= 0169.

11.( ) = ,  =

  =2 0

1

0 ( sin )    = 2

0 sin  1 02

= 

− cos 2 0

1

331

0= (1)1

3

= 13,

=

 ·   =2 0

1

0 ( cos )( sin )    = 2

0 sin  cos  1 03

= 1

2sin22 0

1

441 0= 1

2

 1

4

= 18,

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 15.4 APPLICATIONS OF DOUBLE INTEGRALS ¤ 555

=

 ·   =2 0

1

0 ( sin )2   = 2

0 sin2 1 03

= 1

2 −14sin 22 0

1 441

0=  4

 1 4

=16.

Hence ( ) =

8

3163

=3

8316. 12. ( ) = (2+ 2) = 2,  =2

0

1

0 3  = 8,

=2 0

1

0 4cos    =152

0 cos   =15 sin 2

0 =15,

=2 0

1

0 4sin    = 152

0 sin   = 15

− cos 2 0 =15.

Hence ( ) = 8

558.

13. ( ) = 

2+ 2= ,

 =

( ) = 0

2

1  ·   

=  0 2

12 = ()1

332 1=73,

=

( ) = 0

2

1( cos )()    = 

0 cos  2 13

=  sin 

0

1 442

1= (0)15 4

= 0 [this is to be expected as the region and density function are symmetric about the y-axis]

=

( ) = 0

2

1( sin )()    = 

0 sin  2 13

= 

− cos  0

1

442

1= (1 + 1)15

4

=152

Hence ( ) =

073152

= 01445.

14. Now ( ) =  

2+ 2 = , so

 =

( ) = 0

2

1()    =  0 2

1  = ()(1) = ,

=

( ) = 0

2

1( cos )()    = 

0 cos  2 1  

=  sin 

0

1 222

1= (0)3 2

= 0,

=

( ) = 0

2

1( sin )()    = 

0 sin  2 1  

= 

− cos  0

1

222

1= (1 + 1)3

2

= 3.

Hence ( ) = 03

= 03.

15. Placing the vertex opposite the hypotenuse at (0 0), ( ) = (2+ 2). Then

 = 0

− 

0 

2+ 2

  =  0

2− 3+13( − )3

 = 1

33144121 ( − )4

0 =164. [continued]

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

18. A lamina occupies the region inside the circle x2+ y2 = 2y but outside the circle x2+ y2= 1. Find the center of mass if the density at any point is inversely proportional to its distance from the origin.

Solution:

556 ¤ CHAPTER 15 MULTIPLE INTEGRALS By symmetry, = =

0

− 

0 (2+ 2)   =  0

1

2( − )22+14( − )4



= 1

623144+1015201( − )5

0 =1515 Hence ( ) =2

525. 16.( ) = 

2+ 2= .

 =

56

6

2 sin  1

   = 

56

6

[(2 sin ) − 1] 

= 

−2 cos  − 56

6 = 2√

3 −3

By symmetry of  and () = , = 0, and

=56

6

2 sin 

1  sin    =1256

6 (4 sin3 − sin ) 

=12

−3 cos  +43cos356

6 =√ 3  Hence ( ) =

0 33

2(33− )

 .

17. =

2( ) =3 1

4

12· 2  = 3 1 4

14 =  []311 554

1= (2)1023 5

= 4092,

=

2( )  =3 1

4

12· 2  = 3

124

12 = 1 333

1

1 334

1= 26 3

(21) = 182,

and 0= + = 4092 + 182 = 5912.

18. =

2( ) =25 0

1−2

22·    =25 021

22=1−2

=2  = 1225

02(1542− 4 + 1) 

=1225

0 (1544− 43+ 2)  =123

45− 4+13325 0 =937516 ,

=

2( )  =25 0

1−2

22·    =25 0

1

44=1−2

=2  = 1425 0

(1 − 2)41614



=1425

0 (255164− 323+ 242− 8 + 1)  =14

51

165− 84+ 83− 42+ 25 0 =312578 , and 0= + =937516 +312578 =752.

19.As in Exercise 15, we place the vertex opposite the hypotenuse at (0 0) and the equal sides along the positive axes.

= 0

−

02(2+ 2)   =  0

−

0 (22+ 4)   =  0

1

323+155=−

=0 

=  0

1

32( − )3+15( − )5

 = 1

3

1

3333424+355166

301( − )6

0 =1807 6,

= 0

−

02(2+ 2)   =  0

−

0 (4+ 22)   =  0

4 +1323=−

=0 

=  0

4( − ) +132( − )3

 = 1

55166+131

3333424+355166

0 =1807 6, and 0= + =9076.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

參考文獻

相關文件

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Evaluate the surface

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. Hence, the ellipse and hyperbola are

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. By induction, the formula holds for all

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All

May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.. All