• 沒有找到結果。

奈米幾丁聚醣之製備及應用研究 施詔銘、?耀國

N/A
N/A
Protected

Academic year: 2022

Share "奈米幾丁聚醣之製備及應用研究 施詔銘、?耀國"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

奈米幾丁聚醣之製備及應用研究 施詔銘、?耀國

E-mail: 211269@mail.dyu.edu.tw

摘 要

本研究分為兩部分主題進行論述,第一部份係以噴霧乾燥法製備幾丁聚醣奈米粉末,第二部份則是以幾丁聚醣懸浮液製備 金奈米粉末。第一部份以1% (w/v) 幾丁聚醣懸浮液進行噴霧乾燥製備後可獲得幾丁聚醣奈米粉末。在壓力4 kg/cm2與樣品 流量30 mL/min條件下,由噴霧角度與霧氣外觀比較,超音波霧化器產生之液滴更加微細,且經噴霧乾燥製得產物顆粒粒 徑亦較二流體式霧化器者微小。由於旋風收集器處僅能收集微米級顆粒,此處先以靜電棉證實次微米級顆粒存在後,再以 實驗型靜電集塵器加以收集。以超音波霧化器進行噴霧乾燥,當高壓空氣條件上升時產率隨之增加(2.6%、5.7%、15.5%)

、含水率隨之降低(9.1%、8.3%、6.8%)、顆粒表面漸趨平滑,能提供商業化生產奈米粉末另一選擇。第二部份金/幾丁聚 醣奈米顆粒可藉由鹼性幾丁聚醣懸浮液來製備,幾丁聚醣同時扮演分散劑與還原劑角色。金奈米顆粒與奈米粉末可藉由簡 單之熱裂解與酸水解方法製得,經熱裂解可獲得黑色的奈米金粉末。FESEM證明金奈米粉末粒徑範圍約介於50~200 nm。

酸水解是另一個快速降解幾丁聚醣的方法,本研究採用醋酸來進行酸水解。由AEM證明,紫紅色金懸浮液中金奈米顆粒粒 徑均小於40 nm,其分散性佳。幾丁聚醣懸浮液可製備極佳之奈米金粉末與奈米金顆粒,其製程不需使用毒性物質。

關鍵詞 : 奈米粉末、奈米顆粒、超音波霧化器、靜電集塵器、熱裂解、酸水解、幾丁聚醣、奈米粉末、奈米顆粒、超音波 霧化器、靜電集塵器

目錄

封面內頁 簽名頁 授權書 iii 中文摘要 iv 英文摘要 v 誌謝 vii 目錄 viii 圖目錄 xi 表目錄 xv 1. 緒言 1 2. 文獻回顧 2 2.1 幾丁質與 幾丁聚醣 2 2.1.1 幾丁質與幾丁聚醣的化學結構 3 2.1.2 幾丁質與幾丁聚醣的製備與分析 3 2.1.3 幾丁聚醣的應用 13 2.2 奈米 科技 15 2.2.1 物質尺度定義 16 2.2.2 奈米化技術 19 3. 以噴霧乾燥法製備幾丁聚醣奈米粉末 22 3.1 文獻回顧 22 3.1.1 噴霧乾 燥 22 3.1.2 霧化器種類 22 3.1.3 產品收集方式 29 3.1.4 噴霧乾燥的相關研究 34 3.2 研究目的 36 3.3 材料與儀器設備 38 3.3.1 材料 38 3.3.2 儀器設備 39 3.4 研究方法 40 3.4.1 幾丁聚醣懸浮液之製備 40 3.4.2 噴霧乾燥設備之安裝 40 3.4.3 奈米粉末之收 集 47 3.4.4 噴霧乾燥設備操作條件 49 3.4.5 產品分析 50 3.5 結果與討論 51 3.5.1 幾丁聚醣懸浮液之製備 51 3.5.2 霧化器效果 54 3.5.3 以旋風分離器收集產品 57 3.5.4 以靜電吸引力收集樣品 60 3.6 結論 66 4. 以幾丁聚醣懸浮液製備金奈米粉末 67 4.1 文獻回顧 67 4.1.1 金 67 4.1.2 金的奈米化 69 4.1.3 金奈米顆粒的應用 71 4.1.4 幾丁聚醣對金屬離子之吸附機制 71 4.2 研究目 的 75 4.3 材料與儀器設備 76 4.3.1 材料 76 4.3.2 儀器設備 77 4.4 研究方法 78 4.4.1 幾丁聚醣懸浮液之製備 78 4.4.2 幾丁聚 醣/金複合物懸浮液之製備 78 4.4.3 金奈米粉末之製備 79 4.4.3.1 熱裂解法 79 4.4.3.2 酸水解法 79 4.4.4 樣品分析 80 4.5 結果 與討論 81 4.5.1 金離子的還原 81 4.5.2 金/幾丁聚醣複合物奈米顆粒 86 4.5.3 以熱裂解法製備金奈米顆粒 93 4.5.4 以酸水解 法製備金奈米顆粒 98 4.6 結論 107 5. 總結 108 參考文獻 110 附錄 126 圖附錄 139 圖目錄 圖2.1.1 纖維素、幾丁質及幾丁聚 醣之化學結構 4 圖2.1.2 幾丁質之α形態結晶結構A為鏈結朝上者B為鏈結朝下者 5 圖2.1.3 幾丁質之β形態結晶結構A為鏈 結朝上者B為鏈結朝下者 6 圖2.1.4 竽螺外殼破裂面之交錯層結構 8 圖3.1.1 (A)壓力式、(B)旋轉式與(C)二流體式霧化器內部 結構 24 圖3.1.2 旋轉式霧化器之噴霧影像圖 26 圖3.1.3 壓力式霧化器之噴霧影像圖 27 圖3.1.4 超音波霧化器 28 圖3.1.5 旋風 分離器中氣流流動示意圖 30 圖3.1.6 旋風分離器中氣流流動模擬圖 31 圖3.1.7 一階式靜電集塵器之結構示意圖 32 圖3.1.8 二 階式靜電集塵器之結構示意圖 33 圖3.4.1 實驗型設備簡圖 42 圖3.4.2 自行設計之氣體儲槽 43 圖3.4.3 噴霧乾燥時氣體壓力變 化示意圖 44 圖3.4.4 自行設計之脈衝破壞器 45 圖3.4.5 噴霧乾燥時樣品進料量變化示意圖 46 圖3.4.6 二階式靜電集塵器原型 機之俯視示意圖 48 圖3.5.1 中性幾丁聚醣懸浮液之AEM影像圖 52 圖3.5.2 中性幾丁聚醣懸浮液之粒徑分佈圖 53 圖3.5.3 二 流體式霧化器之噴霧影像圖(進料速率為30 mL/min、高壓空氣壓力為4kgf/cm2) 55 圖3.5.4 超音波霧化器之噴霧影像圖(進料 速率為30 mL/min、高壓空氣壓力為4kgf/cm2) 56 圖3.5.5 以旋風收集器收集之幾丁聚醣粉末FESEM影像圖:使用二流體式霧 化器(進料速率為30 mL/min、高壓空氣壓力為4 kgf/cm2) 58 圖3.5.6 以旋風收集器收集之幾丁聚醣粉末FESEM影像圖:使用 超音波霧化器(進料速率為30 mL/min、高壓空氣壓力為4 kgf/cm2) 59 圖3.5.7 以靜電集塵棉收集之幾丁聚醣粉末FESEM影 像圖:放大100倍(使用超音波霧化器、進料速率為30 mL/min、高壓空氣壓力為4 kgf/cm2) 62 圖3.5.8 以靜電集塵棉收集之 幾丁聚醣粉末FESEM影像圖:放大1000倍(使用超音波霧化器、進料速率為30 mL/min、高壓空氣壓力為4 kgf/cm2) 63 圖3.5.9 以ESP原型機收集之幾丁聚醣粉末FESEM影像圖:操作時之噴霧壓力2 kgf/cm2(使用超音波霧化器、進料速率為30 mL/min) 64 圖3.5.10 以ESP原型機收集之幾丁聚醣粉末FESEM影像圖:操作時之噴霧壓力4 kgf/cm2(使用超音波霧化器、

進料速率為30 mL/min) 65 圖4.1 幾丁聚醣與金屬離子螯合情形:(A)分子內(B)分子間 74 圖4.5.1 鹼性金/幾丁聚醣懸浮液C1 之光譜圖 83 圖4.5.2 鹼性金/幾丁聚醣懸浮液C3之光譜圖 84 圖4.5.3 鹼性金/幾丁聚醣懸浮液C1、C2與C3經反應16小時後

(2)

之光譜圖 85 圖4.5.4 中性金/幾丁聚醣懸浮液C1之AEM影像圖 87 圖4.5.5 中性金/幾丁聚醣懸浮液C2之AEM影像圖 88 圖4.5.6 中性金/幾丁聚醣懸浮液C3之AEM影像圖 89 圖4.5.7 中性金/幾丁聚醣懸浮液C1之SAED圖 90 圖4.5.8 中性金/幾丁 聚醣懸浮液C2之SAED圖 91 圖4.5.9 中性金/幾丁聚醣懸浮液C3之SAED圖 92 圖4.5.10 C1/600銀片上樣本經熱裂解後製得 奈米金結構之FESEM影像圖與局部放大圖 94 圖4.5.11 C1/800銀片上樣本經熱裂解後製得奈米金結構之FESEM影像圖與局 部放大圖 95 圖4.5.12 C3/600銀片上樣本經熱裂解後製得奈米金結構之FESEM影像圖與局部放大圖 96 圖4.5.13 C3/800銀片 上樣本經熱裂解後製得奈米金結構之FESEM影像圖與局部放大圖 97 圖4.5.14 C1H1金奈米顆粒之AEM影像圖 99 圖4.5.15 C2H1金奈米顆粒之AEM影像圖 100 圖4.5.16 C3H1金奈米顆粒之AEM影像圖 101 圖4.5.17 C1H2金奈米顆粒之FESEM影像 圖 102 圖4.5.18 C2H2金奈米顆粒之FESEM影像圖 103 圖4.5.19 C3H2金奈米顆粒之FESEM影像圖 104 圖4.5.20 C3H2金顆 粒之FESEM影像(由選取區域spectrum 3進行EDS分析) 105 圖4.5.21 C3H2金顆粒之EDS分析圖 106 表目錄 表2.1 幾丁聚醣的 應用 14 表2.2.1 1940-1980年間顆粒尺度之定義 17 表2.2.2 德國國家標準對顆粒尺度之定義 18 表3.1 各種形式霧化器之比較 25 表3.2 噴霧乾燥在醫藥領域之相關研究 35 表3.3 幾丁聚醣顆粒製備方式 37 表4.1 金的物理性質 68 表4.2 金的奈米化方法 70 表4.3 金奈米顆粒的應用 73

參考文獻

1.Adamczyk, Z. 2003. Particle adsorption and deposition: role of electricstatic interactions. Adv. Colloid Interface Sci. 100-102: 267-347. 2.Adler, M. and Lee, G. 1999. Stability and Surface activity of lactate dehydrogenase in spray-dried trehalose. J. Pharm. Sci. 88(2): 199-208. 3.Adlim, M., Bakar, M. A., Liew, K. Y., and Ismail, J. 2004. Synthesis of chitosan-stabilized platinum and palladium nanoparticles and their hydrogenation activity. J. Mol. Catal. A-Chem. 212: 141-149. 4.Arrascue, M. L., Garcia, H. M., Horna, O., and Guibal, E. 2003. Gold sorption on chitosan dericatives. Hydrometallurgy 71: 191-200. 5.Artur Stankiewicz, B., Briggs, D. E. G., Evershed, R. P., Flannery, M. B., and Wuttke, M. 1997.

Preservation of chitin in 25-million-year-old fossils. Science. 276(5318): 1541-1543. 6.Asada, M., Takahashi, H., Okamoto, H., Tanino, H., and Danjo, K. 2004. Theophylline particle design using chitosan by the spray drying. Int. J. Pharm. 270: 167-174. 7.Assaad, E., Azzouz, A., Nistor, D., Ursu, A. V., Sajin, T., Miron, D. N., Monette, F., Niquette, P., and Hausler, R. 2007. Metal removal through synergic coagulation-flocculation using an optimized chitosan-montmorillonite system. Appl. Clay Sci. 37: 258-274. 8.Augsten, C. and Mader, K. 2008. Characterizing molar mass distributions and molecule structures of different chitosans using asymmetrical flow field-flow fractionation combined with multi-angle light scattering. Int. J. Pharm. 351: 23-30. 9.Austin, P. R., Brine, C. J, Castle, J. E., and Zikakis, J. P. 1981. Chitin: New facets of research. Science.

212(4496): 749-753. 10.Balogh, L. P., Minc, L. D., and Berka, M. 2007. Novel synthesis of radioactive gold/dendrimer composite nanoparticles for the treatment of cancer. Nanomedicine. 3(4): 338. 11.Banerjee, T., Mitra, S., Kumar Singh, A., Kumar Sharma, R., and Maitra, A. 2002.

Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int. J. Pharm. 243: 93-105. 12.Baxter, A., Dillon, M., and Anthony Taylor, K. D. 1992. Int. J. Biol. Macromol. 14: 166-169. 13.Benhamou, N., Kloepper, J. W., and Tuzun, S. 1998. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta 204: 153-168. 14.Biskos, G., Reavell, K., and Collings, N. 2005. Unipolar diffusion charging of aerosol particles in the transition regime. J. Aerosol. Sci. 36: 247-265. 15.Blackwell, J., Parker, K. D., and Rudall, K. M. 1967. Chitin fibers of diatoms Thalassiosira fluviatilis and Cyclotella cryptica. J. Mol. Biol. 28: 383-385. 16.Bough, W. A., Salter, W. L., Wu, A. C. M., and Perkins, B. E. 1978. Influence of Manufacturing Variables on the characteristics and effectiveness of chitosan products. I. chemical composition, viscosity, and molecular-weight distribution of chitosan products. Biotechnol. Bioeng. XX: 1931-1943. 17.Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Arguelles-Monal, W., Desbrieres, R., and Rinaudo, M. 2001. An infrared investigation in relation with chitin and chitosan characterization. Polymer 42: 3569-3580. 18.Byeon, J. H., Hwang, J., Park, J. H., Yoon, K. Y., Ko, B. J., Kang, S. H., and Ji, J. H. 2006. Collection of submicron particles by an electrostatic precipitator using a dielectric barrier discharge. Aerosol Sci. 37: 1618-1628. 19.Chandra, M., Indi, S. S., and Das, P. K. 2006. First hyperpolarizabilities of unprotected and polymer protected copper nanoparticles prepared by laser ablation. Chem. Phys. Lett. 422: 262-266. 20.Chen, W., Cai, W. P., Liang, C. H., and Zhang, L. D. 2001. Synthesis of gold nanoparticles dispersed within pores of mesoporous silica induced by ultrasonic irradiation and its characterization. Mater. Res. Bull. 36: 335-342. 21.Chen, R. H. and Hwa H. D. 1996. Effect of molecular of chitosan with the same degree of deacetylation on thermal, mechanical, and permeability properties of the prepared membrane. Carbohydr. Polym. 29: 353-358. 22.Chen, X. G., Liu, C. S., Liu, C. G., Meng, X. H., Lee, C. M., and Park, H. J. 2006. Preparation and biocompatibility of chitosan microcarriers as biomaterial.

Biochem. Eng. J. 27: 269-274. 23.Chen, S. H., Wu, Y. C., Mi, F. L., Lin, Y. H., Yu, L. C., and Sung, H. W. 2004. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release 96: 285-300.

24.Chognot, D., Leonard, M., Six, J. L., and Dellacherie, E. 2006. Surfactive water-soluble copolymers for the preparation of controlled surface nanoparticles by double emulsion/solvent evaporation. Colloid Surf. B-Biointerfaces 51(1): 86-92. 25.Coral-Hinostroza, G. N. and Bjerkeng, B.

2002. Astaxanthin from the red crab langostilla (Pleuroncodes planipes): optical R/S isomers and fatty acid moieties of astaxanthin esters. Comp.

Biochem. Physiol. B-Biochem. Mol. Biol. 133(3): 437-444. 26.Corrigan, D. O., Healy, A. M., and Corrigan, O. I. 2006. Preparation and release of salbutamol from chitosan and chitosan co-spray dried compacts and multiparticulates. Eur. J. Pharm. Biopharm. 62: 295-305. 27.Cui, Z. and Mumper, R. J. 2001. Chitosan-based nanoparticles for topical genetic immunization. J. Control. Release 75: 409-419. 28.Curry, J. D. and Kohn, A. J. 1976. Fracture in the crossed-lamellar structure of Conus shells. J. Mater. Sci. 11: 1615-1623. 29.Debbaudt, A. L., Ferreira, M. L., and

(3)

Gschaider, M. E. 2004. Theoretical and experimental study of M2+ adsorption on biopolymers. III. Comparative kinetic pattern of Pb, Hg and Cd. Carbohydr. Polym. 56: 321-332. 30.Ding, S. J. 2007. Biodegradation behavior of chitosan/calcium phosphate composites. J. Non-Cryst. Solids 353: 2367-2373. 31.Domszy, J. G. and Roberts, G. A. 1985. Evaluation of infrared spectroscopic techniques for analyzing chitosan. Makromol.

Chem. 186: 1671-1677. 32.Eaton, P., Doria, G., Pereira, E., Baptista, P. V., and Franco, R. 2007. Imaging gold nanoparticles for DNA sequence recognition in biomedical applications. IEEE Trans. Nanobiosci. 6(4): 282-288. 33.Esumi, K., Takei, N., and Yoshimura, T. 2003.

Antioxidant-potentiality of gold- chitosan nanocomposites. Colloid Surf. B-Biointerfaces 32: 117-123. 34.Fellows, P. 1988. Food processing technology: principles and practice. Ellis Horwood, Chichester, UK. 35.Gades, M. D. and Stren, ScD, J. S. 2005. Chitosan supplementation and fat absorption in men and women. J. Am. Diet. Assoc. 105(1): 72-77. 36.Gamage, A. and Shahidi, F. 2007. Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chem. 104: 989-996. 37.Garitaonandia, J. S., Insausti, M., Goikolea, E., Suzuki, M., Cashion, J.

D., Kawamura, N., Ohsawa, H., de Muro, I. G., Suzuki, K., Plazaola, F., and Rojo, T. 2008. Chemically Induced Permanent Magnetism in Au, Ag, and Cu Nanoparticles: Localization of the Magnetism by Element Selective Techniques. Nano Lett. 8(2): 661–667. 38.Gavini, E., Rassu, G., Muzzarelli, C., Cossu, M., and Giunchedi, P. 2008. Spray-dried microspheres based in methylpyrrolidinone chitosan as new carrier for nasal administration of metoclopramide. Eur. J. Pharm. Biopharm. 68: 245-252. 39.Georgetti, S. R., Casagrande, R., Souza, C. R. F., Oliverira, W. P., and Fonseca, M. J. V. 2008. Spray drying of the soybean extract: Effect on chemical properties and antioxidant activity. LWT 41: 1521-1527.

40.Goortani, B. M., Proulx, P., Xue, S., and Mendoza-Gonzalez, N. Y. 2007. Controlling nanostructure in thermal plasma processing: Moving from highly aggregated porous structure to spherical silica nanoparticles. Powder Technol. 175(1): 22-32. 41.Grenha, A., Remunan-Lopez, C., Carvalho, E. L. S., and Seijo, B. 2008. Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur. J. Pharm. Biopharm. 69: 83-93. 42.Guo, S. and Wang, E. 2007. Sythesis and electrochemical applications of gold nanoparticles.

Anal. Chim. Acta. 598: 181-192. 43.Hadinoto, K., Phanapavudhikul, P., Kewu, Z., and Tan, R. B. H. 2007. Dry powder aerosol delivery of large hollow nanoparticles aggregates as prospective carriers of nanoparticles drugs: Effects of phospholipids. Int. J. Pharm. 333: 187-198. 44.Hamilton, V., Yuan, Y., Rigney, D. A., Chesnutt, B. M., Puckett, A. D., Ong, J. L., Yang, Y., Haggard, W. O., Elder, S. H., and Bumgardner, J. D. 2007.

Bone cell attachment and growth on well-characterized chitosan films. Polym. Int. 56: 641-647. 45.He, Y. 2005. Study on the formation mechanism of cerium oxalate nanoparticles from the coupling route of homogeneous precipitation with microemulsion. Mater. Lett. 59:

3010-3013. 46.He, P., Davis, S. S., and Illum, L. 1999. Chitosan microspheres prepared by spray drying. Int. J. Pharm. 187: 53-65. 47.Henriksen, I., Green, K. L., Smart, J. D., Smistad, G., and Karlsen, J. 1996. Bioadhesion of hydrated chitosans: an in vitro and in vivo study. Int. J. Pharm.

145: 231-240. 48.Hernandez, R. B., Franco, A. P., Yola, O. R., Lopez-Delgado, A., Felcman, J., Recio, M. A. L., and Merce, A. L. R. 2008. J.

Mol. Struct. 877: 89-99. 49.Hino, T., Shimabayashi, S., Ohnishi, N., Fujisaki, M., Mori, H., Watanabe, O., Kawashima, K., and Nagao, K. 2000.

Development of a new type nozzle and spray-dried for industrial production of fine powders. Eur. J. Pharm. Biopharm. 49: 79-85. 50.Hirano, S.

1999. Chitin and chitosan as novel biotechnological materials. Polym. Int. 48(8): 732-734. 51.Hirano, S., Inui, H., and Yamamoto, K. 1995. The mineralization of CO3-2 ions in crab shells, and their mimetic composite materials. Energy Conv. Manag. 36(6-9): 783-786. 52.Huang, M., Ma, Z., Khor, E., and Lim, L. Y. 2002a. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm. Res. 19(10): 1488-1494. 53.Huang, H. and Yang, X. 2003. Chitosan mediated assembly of gold nanoparticles multilayer. Colloid Surf. A-Physicochem. Eng. Asp. 226: 77-86. 54.Huang, Y. C., Yeh, M. K., and Chiang, C. H. 2002b. Formulation factors in preparing BTM–chitosan microspheres by spray drying method. Int. J. Pharm. 242:

239-242. 55.Huang, H., Yuan, Q., and Yang, X. 2004. Preparation and characterization of metal-chitosan nanocomposites. Colloid Surf.

B-Biointerfaces 39: 31-37. 56.Huang, H., Yuan, Q., and Yang, X. 2005. Morphology study of gold-chitosan nanocomposites. J. Colloid Interface Sci. 282: 26-31. 57.Hummel, R. E. and Wiβmann, P. 1996. Handbook of optical properties: volume II optics of small particles, interfaces, and surfaces, CRC Press, Florida, USA. 58.Ieva, E., Trapani, A., Cioffi, N., Ditaranto, N., Monopoli, A., and Sabbatini, L. 2009. Analytical

characterization of chitosan nanoparticles for peptide drug delivery applications. Anal. Bioanal. Chem. 393: 207-215. 59.Iskandar, F., Nandiyanto, A. B. D., Yun, K. M., Hogan Jr., C. J., Okuyama, K., and Biswas, P. 2007. Enhanced photocatalytic performance of brookite TiO2 macroporous particles prepared by spray drying with colloidal templating. Adv. Mater. 19: 1408-1412. 60.Ismail, A. A. 2005. Synthesis and characterization of Y2O3/Fe2O3/TiO2 nanoparticles by sol–gel method. Appl. Catal. B-Environ. 58: 115-121. 61.Janes, K. A., Calvo, P., and Alonso, M. J. 2001a.

Ploysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 47: 83-97. 62.Janes, K. A., Fresneau, M. P., Marazuela, A., Fabra, A., and Alonson, M. J. 2001b. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release 73: 255-267.

63.Joachim, C. 2005. To be nano or not to be nano?. Nat. Mater. 4: 107-109. 64.Kanatt, S. R., Chander, R., and Sharma, A. 2008. Chitosan glucose complex-A novel food preservative. Food Chem. 106(2): 521-528. 65.Ken, B. 2006. What's in a name? Nano experts seek definitions. Met.

powder rep. 61(11): 24-26. 66.Kiang, C. H. 2003. Phase transition of DNA-linked gold nanoparticles. Physica A 321: 164-169. 67.Kim, K. B. and Yoon, B. J. 1997. Field charging of spherical particles in linear electric field. J. Colloid Interface Sci. 186: 209-211. 68.Knaul, J. Z., Kasaai, M. R., Tam Bui, V., and Creber, K. A. M. 1998. Characterization of deacetylated chitosan and chitosan molecular weight review. Can. J. Chem. 76:

1699-1706. 69.Ko, S. H., Choi, Y., Hwang, D. J., Grigoropoulos, C. P., Chung, J., and Poulikakos, D. 2006. Nanosecond laser ablation of gold nanoparticle films. Appl. Phys. Lett. 89: 141126. 70.Kocik, M., Dekowski, J., and Mizeraczyk, J. 2005. Particle precipitation efficiency in an electrostatic precipitator. J. Electrost. 63: 761-766. 71.Kozma, G., Kukovecz, A., and Konya, Z. 2007. Spectroscopic studies on the formation kinetics of SnO2 nanoparticles synthesized in a planetary ball mill. J. Mol. Struct. 834-836: 430-434. 72.Kuroiwa, T., Noguchi, Y., Nakajima, M., Sato, S., Mukataka, S., and Ichikawa, S. 2008. Production of chitosan oligosaccharides using chitosanase immobilized on amylose-coated magnetic

(4)

nanoparticles. Process Biochem. 43(1): 62-69. 73.Labuza, T. P., Le Roux, J. P., Fan, T. S., and Tannenbaum, S. R. 1970. Engineering factors in single-cell protein production. II. Spray drying and cell viability. Biotechnol. Bioeng. XII: 135-140. 74.Lai, M. K., Chang, C. Y., Lien, Y. W., and Tsiang, R C. C. 2006. Application of gold nanoparticles to microencapsulation of thioridazine. J. Control. Release 111(3): 352-361. 75.Lavertu, M., Xia, Z., Serreqi, A. N., Berrada, M., Rodrigues, A., Wang, D., Buschmann, M. D., and Gupta, A. 2003. A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. J. Pharm. Biomed. Anal. 32(6): 1149-1158. 76.Learoyd, T. P., Burrows, J. L., French, E., and Seville, P. C. 2008a. Modified release of beclometasone dipropionate from chitosan-based spray dried respirable powders. Powder Technol.

187: 231-238. 77.Learoyd, T. P., Burrows, J. L., French, E., and Seville, P. C. 2008b. Chitosan-based spray-dried respirable powders for sustained delivery of terbutaline sulfate. Eur. J. Pharm. Biopharm. 68: 224-234. 78.Lee, K. M., Park, S. T., and Lee, D. J. 2005. Nanogold synthesis by inert gas condensation for immuno-chemistry probes. J. Alloy. Compd. 390: 297-300. 79.Lefebvre, A. H. 1989. Atomization and sprays, Hemisphere Publishing Corporation, Washington, USA. 80.Lima, I. S., Lazarin, A. M., and Airoldi, C. 2005. Favorable chitosan/cellulose film combinations for copper removal from aqueous solutions. Int. J. Biol. Macromol. 36: 79-83. 81.Lisiecki, I., Billoudet, F., and Pileni, M. P. 1997. Syntheses of copper nanoparticles in gelified microemulsion and in reverse micelles. J. Mol. Liq. 72: 251-261. 82.Liu, H. B., Ascencio, J. A., Perez-Alvarez, M., and Yacaman, M. J. 2001. Melting behavior of nanometer sized gold isomers. Surf. Sci. 491: 88-98. 83.Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z., and Yao, K. D. 2001. Antibacterial action of chitosan and Carboxymethylated chitosan. J. Appl. Polym. Sci. 79: 1324-1335. 84.Luo, Y. 2006.

Preparation of single-crystalline gold nanoparticles through a thermal process. Mater. Lett. 60(28): 3361-3363. 85.Ma, Y., Li, N., Yang, C., and Yang, X. 2005. One-step synthesis of water-soluble gold nanoparticles/polyaniline composite and its application in glucose sensing. Colloid Surf.

A-Physicochem. Eng. Asp. 269: 1-6. 86.Maa, Y. F., Nguyen, P. A. T., and Hsu, S. W. 1998. Spray-drying of air-liquid interface sensitive recombinant human growth hormone. J. Pharm. Sci. 87(2): 152-159. 87.Madihally, S. V. and Matthew, H. W. T. 1999. Porous chitosan scaffolds for tissue engineering. Biomaterials 20: 1133-1142. 88.Maekawa, A. and Okuyama, F. 2001. Nano and microcrystallites of gold grown by argon-ion bombardment. Surf. Sci. 481: L427-L432. 89.Magnusson, M. H., Deppert, K., Malm, J. O., Bovin, J. O., and Samuelson, L. 1999. Size-selected gold nanoparticles by aerosol technology. Nanostructured Materials 12: 45-48. 90.Marcotte, E., Hart, P. J., Boucher, I., Brzezinski, R., and Robertus, J. D. 1993. Crystallization of a Chitosanase from Streptomyces N174. J. Mol. Biol. 232(3): 995-996. 91.Masters, K. 1991. Spray drying handbook. (5th ed.), Longman, Essex, UK. 92.Mi, F. L., Kuan, C. Y., Shyu, S. S., Lee, S. T., and Chang, S. F. 2000. The study of gelation kinetics and chain-relaxation properties of glutaraldehyde- cross-linked chitosan gel and their effects on microspheres preparation and drug release.

Carbohydr. Polym. 41: 389-396. 93.Mi, F. L, Wong, T. B., Shyu, S. S and Chang, S. F. 1999. Chitosan microspheres: modification of polymeric chem-physical properties of spray-dried microspheres to control the release of antibiotic drug. J. Appl. Polym. Sci. 71(5): 747-759. 94.Mima, S., Miya, M., Iwamoto, R., and Yoshikawa, S. 1983. High deacetylated chitosan and its properties. J. Appl. Polym. Sci. 28: 1909-1917. 95.Mizoe, T., Ozeki, T., and Okada, H. 2007. Preparation of drug nanoparticles-containing microparticles using a 4-fluid nozzle spray drier for oral, pulmonary, and injection dosage forms. J. Control. Release. 122: 10-15. 96.Muzzarelli, R. A. A. 1977. Chitin. (1st ed.), Pergamon Press, Oxford, England.

97.Muzzarelli, R. A. A. and Rocchetti, R. 1985. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydr. Polym. 5: 461-472. 98.Nakaso, K., Han, B., Ahn, K. H., Choi, M., and Okuyama, K. 2003. Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. J. Aerosol. Sci. 34: 869-881.

99.Newman, J. D. S., Roberts, J. M., and Blanchard, G. J. 2007. Optical organo- phosphate/phosphonate sensor based upon gold nanoparticle functionalized quartz. Anal. Chim. Acta 602: 101-107. 100.Nguyen, T. T. T., Loiseau, G., Icard-Verniere, C., Rochette, I., Treche, S., and Guyot, J. P. 2007a. Effect of fermentation by amylolytic lactic acid bacteria, in process combinations, on characteristics of rice/soybean slurries: A new method for preparing high energy density complementary foods for young children. Food Chem. 100: 623-631. 101.Nguyen, T. T. T., Guyot, J. P., Icard-Verniere, C., Rochette, I., and Loiseau, G. 2007b. Effect of high pressure homogenization on capacity of Lactobacillus plantarum A6 to ferment rice/soybean slurries to prepare high energy density complementary foods. Food Chem. 102: 1288-1295. 102.Nie, H., Lee, L. Y., Tong, H., and Wang, C. H. 2008. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. J. Control. Release 129: 207-214. 103.No, H. K., Park, N. Y., Lee, S H., and Meyers, S. P. 2002. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74: 65-72. 104.Oh, K. S., Kim, R. S., Lee, J., Kim, D., Cho, S. H., and Yuk, S. H. 2008. Gold/chitosan/pluronic composite nanoparticles for drug delivery. J. Appl. Polym. Sci. 108: 3239-3244.

105.Okuyama, K., Noguchi K., Kanenari M., Egawa T., Osawa, K., and Ogawa, K. 2000. Carbohydr. Polym. 41: 237-247. 106.Oungbho, K. and Muller, B. W. 1997. Chitosan sponges as sustained release drug carriers. Int. J. Pharm. 156: 229-237. 107.Pal, U., Bautista-Hernandez, A., Koshizaki, N., Sasaki, T., and Terauchi, S. 2001. Synthesis of GaAs nanoparticles embedded in SiO2 matrix by radio frequency co-sputtering technique. Scr. Mater. 44: 1841-1846. 108.Pal, A., Shah, S., and Devi, S. 2007. Preparation of silver, gold and silver-gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100. Colloid Surf. A-Physicochem. Eng. Asp. 302: 483-487. 109.Peukert, W. and Wadenpohl, C. 2001.

Industrial separation of fine particles with difficult dust properties. Powder Technol. 118: 136-148. 110.Rajamathi, M. and Seshadri, R. 2002.

Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions. Curr. Opin. Solid State Mat. Sci. 6(4): 337-345. 111.Ravi Kumar, M. N. V. 2000. A review of chitin and chitosan applications. React. Funct. Polym. 46: 1-27. 112.Rege, P. R., Garmise, R. J., and Block, L.

H. 2003a. Spray-dried chitinosans: Part I: preparation and characterization. Int. J. Pharm. 252(12): 41-51. 113.Rege, P. R., Garmise, R. J., and Block, L. H. 2003b. Spray-dried chitinosans: Part II: in vitro drug release from tablets made from spray-dried chitinosans. Int. J. Pharm. 252(12):

53-59 114.Rehg, T., Dorger, C., and Chau, P. C. 1986. Application of an atomizer in producing small alginate gel beads for cell immobilization.

(5)

Biotechnol. Lett. 8(2): 111-114. 115.Reindl, A., Cimpean, C., Bauer, W., Comanici, R., Ebbers, A., Peukert, W., and Kryschi, C. 2007. Dispersing silicon nanoparticles with a stirred media mill and subsequent functionalization with phenyl acetylene. Colloid Surf. A-Physicochem. Eng. Asp. 301:

382-387. 116.Rudall, K. M. 1963. The chitin/protein complexes of insect cuticles. Adv. insect physiol. 1: 257-313. 117.Sham, J. O. H., Zhang, Y., Finlay, W. H., Roa, W. H., and Lobenberg, R. 2004. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int. J. Pharm. 269: 457-467. 118.Shantha, K. L. and Harding, D. R. K. 2002. Synthesis and characterization of chemically modified chitosan microspheres. Carbohydr. Polym. 48: 247-253. 119.Shen, M., Du, Y., Hua, N., and Yang, P. 2006. Microwave irradiation synthesis and self-assembly of alkylamine-stabilized gold nanoparticles. Powder Technol. 162: 64-72. 120.Shi, L. and Bayless, D. J. 2007.

Comparison of boundary conditions for predicting the collection efficiency of cyclones. Powder Technol. 173: 29-37. 121.Shih, C. M., Shieh, Y. T., and Twu, Y. K. 2009. Preparation of gold nanopowders and nanoparticles using chitosan suspensions. Carbohydr. Polym. Article in press.

122.?ljuki?, B., Baron, R., Salter, C., Crossley, A., and Compton, R. G. 2007. Combinatorial electrochemistry using metal nanoparticles: From proof-of-concept to practical realisation for bromide detection. Anal. Chim. Acta. 590(1): 67-73. 123.Stahl, K., Claesson, M., Lilliehorn, P., Linden, H., and Backstrom, K. 2002. The effect of process variables on the degradation and physical properties of spray dried insulin intended for

inhalation. Int. J. Pharm. 233: 227- 237. 124.Suh, Y. J. and Kim, S. S. 1996. Effect of obstructions on the particle collection efficiency in a two-stage electrostatic precipitator. J. Aerosol. Sci. 27(1): 61-74. 125.Sun, C., Qu, R., Chen, H., Ji, C., Wang, C., Sun, Y., and Wang, B. 2008.

Degradation behavior of chitosan in the “green” synthesis of gold nanoparticles. Carbohydr. Res. 343: 2595-2599. 126.Tamil Selvan, S., Nogami, M., Nakamura, A., and Hamanaka, Y. 1999. A facile sol-gel method for the encapsulation of gold nanoclusters in silica gels and their optical properties. J. Non-Cryst. Solids 255: 254-258. 127.Tamou, Y. and Tanaka, S. I. 1999. Formation and coalescence of tungsten nanoparticles under electron beam irradiation. Nanostructured Materials 12: 123-126. 128.Tan, S. C., Khor, E., Tan, T. K., and Wong, S. M. 1998. The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta 45: 713-719. 129.Thompson, D. T. 2007. Using gold nanoparticles for catalysis. Nano Today 2(4): 40-43. 130.Toei, K. and Kohara, T. 1976. A conductometric method for colloid titrations. Anal. Chim. Acta. 83: 59-65. 131.Tsaih, M. L. and Chen, R. H. 1997. Effect of molecular and urea on the conformation of chitosan molecules in dilute solutions. Int. J. Biol. Macromol. 20: 233-240. 132.Twu, Y. K., Chen, Y. W., and Shih, C. M. 2008. Preparation of silver nanoparticles using chitosan suspensions. Powder Technol. 185: 251-257. 133.Tyler, D. E and Black, W. T. 1990. Metals Handbook. (10th ed.), ASM International, OH, USA. 134.Valden, M., Lai, X., and Goodman, D. W. 1998. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383): 1647-1650. 135.Van Miller, J. P., Hermansky, S. J., Losco, P. E., and Ballantyne, B.

2002. Chronic toxicity and oncogenicity study with glutaraldehyde dosed in the drinking water of Fischer 344 rats. Toxicology 175: 177-189.

136.Varma, A. J., Deshpande, S. V., and Kennedy, J. F. 2004. Metal complexation by chitosan and its derivates: a review. Carbohydr. Polym. 55:

77-93. 137.Varum K. M., Egelandsdal, B., and Ellekjar, M. R. 1995. Characterization of partially N-acetylated chitosan by near infra-red spectroscopy. Carbohydr. Polym. 28: 187-193. 138.Vasconcelos, H. L., Camargo, T. P., Goncalves, N. S., Neves, A., Laranjeira, M. C. M., and Favere, V. T. 2008. Chitosan crosslinked with a metal complexing agent: synthesis, characterization and copper(II) ions adsorption. React. Funct.

Polym. 68: 572-579. 139.Wadley, H. N. G., Zhou, X., Johnson, R. A., and Neurock, M. 2001. Mechanisms, models and methods of vapor deposition. Prog. Mater. Sci. 46: 329-377. 140.Wang, Q., Dong, Z., Du, Y., and Kennedy, J. F. 2007. Controlled release of ciprofloxacin hydrochloride from chitosan/polyethylene glycol blend films. Carbohydr. Polym. 69: 336-343. 141.Warchol, J. B., Breli?ska, R., and Herbert, D.

C. 1982. Analysis of colloidal gold methods for labelling proteins. Histochemistry 76(4): 567-575. 142.Weiser, B. L. 1933. Inorganic colloid chemistry, Wiley, NJ, USA. 143.Xie, W., Xu, P., and Liu, Q. 2001. Antioxidant activity of water-soluble chitosan derivatives. Bioorg. Med. Chem.

Lett. 11(13): 1699-1701. 144.Xu, Y. and Du, Y. 2003. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int. J. Pharm. 250: 215-226. 145.Xu, H., Ma, L., Shi, H., Gao, C., and Han. C. 2007. Chitosan-hyaluronic acid hybrid film as a novel wound dressing: in vitro and in vivo studies. Polym. Adv. Technol. 18: 869-875. 146.Xu, X. D., Wang, Y. C., and Liu, Z. F. 2005.

Large-scale fabrication of uniform gold nanoparticles in ultrahigh vacuum. J. Cryst. Growth 285: 372-379. 147.Yang, Y., Lan, J., and Li, X. 2004.

Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater.

Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process 380: 378-383. 148.Yang, T. C., Li, C. F., Chou, S. S., and Chou, C. C. 2005. Adsorption of metal cations by water-soluble N-alkylated disaccharide chitosan derivatives. J. Appl. Polym. Sci. 98: 564-570. 149.Yang, Z., Niu, Z., Lu, Y., Hu, Z., and Han, C. C. 2003. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Angew. Chem.

Int. Ed. 42: 1943-1945. 150.Yang, Z., Shu, J., Zhang, L., and Wang, Y. 2006. Preparation and adsorption behavior for metal ions of cyclic polyamine derivative of chitosan. J. Appl. Polym. Sci. 100: 3018-3023. 151.Yoo, K. H., Lee, J. S., and Oh, M. D. 1997. Charging and collection of submicron particles in two-stage parallel-plate electrostatic precipitator. Aerosol Sci. Technol. 27: 308-323. 152.Yuan, Y., Zhang, P., Yang, Y., Wang, X., and Gu, X. 2004. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials 25: 4273-4278. 153.Zhan, C., Li, D., Zhang, D., Xu, W., Nie, Y., and Zhu, D. 2004. The excited-state absorption and third-order optical nonlinearity from 1-dodecanethiol protected gold nanoparticles: Application for optical limiting. Opt. Mater. 26(1): 11-15. 154.Zhang, Y., Xue, C., Xue, Y., Gao, R., and Zhang, X.

2005. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr. Res. 340: 1914-1917.

參考文獻

相關文件

 Create and present information and ideas for the purpose of sharing and exchanging by using information from different sources, in view of the needs of the audience. 

 Create and present information and ideas for the purpose of sharing and exchanging by using information from different sources, in view of the needs of the audience. 

Using Storytelling to Develop Students’ Literacy Skills and Positive Values is a resource package produced by the English Language Education Section, Curriculum Development

As n increases, not only does the fixed locality bound of five become increasingly negligible relative to the size of the search space, but the probability that a random

In order to identify the best nanoparticle synthesis method, we compared the UV-vis spectroscopy spectrums of silver nanoparticles synthesized in four different green

This study was conducted using the key factor from Technology Acceptance Model (TAM), Theory of Reasoned Action, Diffusion of Innovation, and Involve Theory to explore the

Chen, 2008, “Advanced Process Control of Metal Sputter Deposition Using a Time Series Analysis,” International Journal of Advanced Manufacturing Technology, 36(5), pp. Lee, 2007,

In this study, we report the preparation of metal Zinc (Zn) and Zinc oxide (ZnO) nanoparticles using an evaporation/condensation aerosol process via horizontal tube furnace