• 沒有找到結果。

第三章常見的基本訊號(一)弦波訊號弦波訊號

N/A
N/A
Protected

Academic year: 2022

Share "第三章常見的基本訊號(一)弦波訊號弦波訊號"

Copied!
32
0
0

加載中.... (立即查看全文)

全文

(1)

授課老師:

林俊宏 老師 資料來源:

蕭子健 老師

(2)

第三章 常見的基本訊號

(一) 弦波訊號

(3)

• 前言

– 弦波訊號為許多應用的基礎,本章將從弦波之 產生、特性、到應用範疇等作說明。

• 目標

– 瞭解不同函數所產生的弦波訊號 – 瞭解弦波訊號之週期特性

• 關鍵名詞

– 正弦訊號 (Sinusoidal signal)

– 指數訊號 (Exponential signal)

– 週期性 (Periodic)

(4)

What does “sinusoidal” mean?

The curve whose ordinates (縱座標) are proportional to sines of the abscissas (橫坐標) with the equation y=a*sin(x) (Webster’s Third New

International Dictionary)

• 數學上指三角函數之一。直角三角形中,一銳角的對邊除以斜邊所得的 值,稱為此角的「正弦」。

(

中華民國教育部 重編國語辭典修訂本

)

三角函數中的正弦函數(sin)及餘弦函數(cos)只有相位上的差別(兩者相位相差) , 其餘性質並無不同,因此在討論訊號的時候,正弦函數及餘弦函數所表示的訊號 一律都稱為「正弦訊號」。

c

a

b

 

=

= +

 

=

=

( / ) tan

1 ) ( cos )

( sin

/ ) cos(

/ ) sin(

1 2 2

a b where

c a

c b

θ

θ θ

θ

θ

θ

(5)

) t

Acos(

x(t) = ω + φ

A:訊號之振幅大小;

ω :角頻率,單位是每秒多少弳度(radians/s);

Φ:初始相位,亦即 t=0 之相角,單位為弳度(radians);

f:f= ω /2π,為訊號之頻率,單位是赫茲(Hz)。

首先,假設正弦訊號 x(t) 是一個週期性訊號,且 x(t) 的週期為 T,

依據週期的定義可知 ,T = 1/f = 2π /ω ,因此代入右式:

符合週期性訊號的要件,故可稱「連續時間下之弦波訊號為一週 期性訊號」

𝑥𝑥(𝑡𝑡 + 𝑇𝑇) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔(𝑡𝑡 + 𝑇𝑇) + 𝜑𝜑)

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡 + 𝜔𝜔𝑇𝑇 + 𝜑𝜑)

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡 + 𝜔𝜔2𝜋𝜋 𝜔𝜔 + 𝜑𝜑)

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡 + 2𝜋𝜋 + 𝜑𝜑)

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔𝑡𝑡 + 𝜑𝜑)

= 𝑥𝑥(𝑡𝑡)

(6)

) cos(

) ( )

( t = x t = A ω t + φ

y if

時域 (Time Domain) 頻域 (Frequency Domain)

取樣 (Sampling) 取樣週期 (Sampling Period)

一個樣本為多少秒 (second / Sample, s/S)

取樣速率 (Sampling Rate)

每秒多少樣本(Sample/second, S/s)

類比 (Analog) 秒 (second, sec) 頻率 (cycle/sec);角頻率 (rad/sec)

數位 (Digital) 次 (Time, time) 數位頻率 (cycle/S);數位角頻率 (rad/S)

時域 (Time Domain) 頻域 (Frequency Domain) 取樣

T s f s = 1/T s

類比

T f;ω = 2πf

數位

n F =f/f s ;ω=2πF=2πf/f s

(7)

假設此離散時間之正弦訊號是一週期性訊號的話,就會有一個週期N,滿足下面 情況:(由於為離散時間之狀況,因此週期N與n相同必須為整數)

𝑥𝑥[𝑛𝑛 + 𝑁𝑁] = 𝑥𝑥[𝑛𝑛]

𝑥𝑥[𝑛𝑛 + 𝑁𝑁] = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛺𝛺(𝑛𝑛 + 𝑁𝑁) + 𝜑𝜑)

= 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝛺𝛺𝑛𝑛 + 𝛺𝛺𝑁𝑁 + 𝜑𝜑)

由式子中可以得知,只有在 ΩN 等於2π 的整數倍時,才有可能使得 成立,亦即

𝛺𝛺𝑁𝑁 = 2𝜋𝜋𝑚𝑚 (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝐴𝐴) 𝑚𝑚 ∈ 𝑍𝑍, 𝑁𝑁 ∈ 𝑍𝑍 𝛺𝛺 =2𝜋𝜋𝑚𝑚

𝑁𝑁 �

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝐴𝐴

𝐴𝐴𝑐𝑐𝐴𝐴𝑐𝑐𝑐𝑐 � 𝑚𝑚 ∈ 𝑍𝑍, 𝑁𝑁 ∈ 𝑍𝑍

Ex.. 請參考 page 3-37, 問題與討論

(8)

複數 (Complex number)

iy x

z = +

實部 (Real part)

虛部 (Imaginary part)

) sin(

) ˆ cos(

ˆ ,

) ( tan )),

sin(

) (cos(

) (

2 2

1 2

2 2 2

2 2

2 2

θ θ

θ θ

θ

i z

and y

x z

where z

z z

x and y

y x

r where i

r

y x

i y y

x y x

x z

iy x z

+

= +

=

=

= +

= +

=

+ + + +

= +

=

複數表示法

三角函數表示法

向量空間表示法

(9)

尤拉公式 (Euler formula)

iy x

z = +

實部 (Real part)

虛部 (Imaginary part)

) sin(

) cos(

,

} Im{

} Re{

) sin(

) cos(

) ( tan ),

sin(

) cos(

, )) sin(

) (cos(

2 2

1 2

2

θ θ

θ θ

θ θ

θ θ

θ

θ θ

θ

θ θ

i e

and y

x z

where e

z z

z i

z i

e

x and y

i e

y x

r where

re i

r z

iy x z

i i

i

i i

+

= +

=

=

+

= +

=

= +

= +

=

= +

= +

=

複數表示法

三角函數表示法 尤拉表示法

向量空間表示法

(10)

 

 

= +

+

= +

 

+

− +

=

+ +

+

=

≈ +

=

+

− +

+

− +

+

− +

+

) 2 (

) 1 sin(

) 2 (

) 1 cos(

) sin(

) cos(

) sin(

) cos(

) cos(

) (

) ( )

(

) ( )

( )

( ) (

) (

ϕ ω ϕ

ω

ϕ ω ϕ

ω ϕ

ω ϕ ω

ϕ ω

ϕ ω

ϕ ω

ϕ ω ϕ

ω

ϕ ω ϕ

ω ϕ ω

t i t

i

t i t

i t

i t i

t i

e i e

t

e e

t

t i

t e

t i

t e

Ae t

A t

x

(11)

Elementary Signals

★ 1. Exponential Signals x t ( ) = Be

a t

1. Decaying exponential, for which a < 0 2. Growing exponential, for which a > 0

B and a are real parameters

(12)

Ex. Lossy capacitor:

Figure

Lossy capacitor, with the loss represented by shunt resistance R.

( ) ( ) 0 RC d v t v t

dt + =

KVL Eq.:

/( )

( ) 0 t RC

v t

=

V e

RC = Time constant

Discrete-time case:

[ ]

n

x n = Br

r = e α

where

Figure

(a) Decaying

exponential form of discrete-time signal.

(b) Growing

exponential form of

discrete-time signal.

(13)

Signals_and_Systems_Simon Haykin & Barry Van Veen

13

( ) ( ) 0 RC d v t v t

dt + =

/( )

( ) 0 t RC

v t

=

V e

0 )

) ( ( )

( )

(

then circuit,

RC a

s it' if

) ) (

) ( ) (

) ( (

) ) (

( )

( )

(

= +

=>

=

=

=>

=

=

=

=>

=

t dt v

t RC dv

dt t C dv

R t v

dt t C dv

t C i

dt t i C

t t Q

v

R t t v

i R

t i t

v

R c

c R

c c

R

R

(14)

★ 2. Sinusoidal Signals ( ) cos( ) x t = A ω φ t +

T 2 π

= ω

where

( ) co ( ( s ) )

cos( )

cos( 2 ) cos( )

( )

x t T A t T

A t T

A t

A t

x t

ω φ

ω ω φ ω π φ ω φ

+ = + +

= + +

= + +

= +

=

periodicity

◆ Continuous-time case:

(15)

◆ Discrete-time case :

[ ] cos( )

x n = A Ω + n φ

[ ] cos( )

x n + N = A Ω + Ω + n N φ

2

N π m

Ω = 2 m radians/cycle, integer ,

N m N Ω = π

Periodic condition:

or

Ex. A discrete-time sinusoidal signal: A = 1,

φ

= 0, and N = 12.

(16)

Example 1.7 Discrete-Time Sinusoidal Signal

A pair of sinusoidal signals with a common angular frequency is defined by

1 [ ] sin[5 ]

x n = π n x n 2 [ ] = 3 cos[5 π n ]

1 2

[ ] [ ] [ ] y n = x n + x n

and

(a) Both x1[n] and x2[n] are periodic. Find their common fundamental period.

(b) Express the composite sinusoidal signal

In the form y[n] = Acos(Ωn +

φ

), and evaluate the amplitude A and phase

φ

.

<Sol.>

(a) Angular frequency of both x1[n] and x2[n]:

5 radians/cycle π

Ω = 2 2 2

5 5

m m m

N π π

= = π =

This can be only for m = 5, 10, 15, …, which results in N = 2, 4, 6, …

(17)

sin( ) 1 and cos( ) 3

A φ = − A φ =

1 2

sin( ) amplitude of [ ] 1 tan( )

cos( ) amplitude of [ ] 3 x n

x n φ φ

φ

= = = −

sin( ) 1 A φ = −

( 1 ) 2

sin / 6

A π

= − =

− [ ] 2cos 5

y n =   π n − π 6  

φ = − π / 6

Accordingly, we may express y[n] as (b) Trigonometric identity:

cos( ) cos( ) cos( ) sin( )sin( ) A Ω + n φ = An φ − An φ

x

1[n] + x2[n] with the above equation to obtain that Let Ω = 5π, then compare

(18)

★ 3. Relation Between Sinusoidal and Complex Exponential Signals

1. Euler’s identity:

e

jθ

= cos θ + j sin θ

Complex exponential signal:

B = Ae

jφ

cos( ) Re{

j t

} A ω φ t + = Be

ω

( )

cos( ) sin( )

j t

j j t

j t

Be

Ae e Ae

A t jA t

ω

φ ω φ ω

ω φ ω φ

+

=

=

= + + +

( ) cos( ) x t = A ω φ t +

◇ Continuous-time signal in terms of sine function:

( ) sin( ) x t = A ω φ t +

sin( ) Im{

j t

}

A ω φ t + = Be

ω

(19)

π / 4 π / 4

2. Discrete-time case:

cos( ) Re{

j n

}

A Ω + n φ = Be

and

3. Two-dimensional representation of the complex exponential e j Ω n for Ω = π/4 and n = 0, 1, 2, …, 7.

:

Projection on real axis: cos(Ωn);

Projection on imaginary axis: sin(Ωn)

Figure

Complex plane, showing eight points uniformly distributed on the unit circle.

sin( ) Im{

j n

}

A Ω + n φ = Be

(20)

★ 4. Exponential Damped Sinusoidal Signals

( )

t

sin( ), 0

x t = Ae

α

ω φ t + α >

Example for A = 60,

α

= 6, and

φ

= 0.

Figure

Exponentially damped sinusoidal signal Ae

−at

sin( ω t), with A = 60 and α

= 6.

◆ Discrete-time case:

[ ]

n

sin[ ]

x n = Br Ω + n φ

(21)

習作 3-1

題目:正弦訊號 (Sinusoidal signal)

目標:何謂正弦訊號,及如何模擬與產生?

程式:ex 3-1 Sinusoidal signal.vi

(22)

習作3-2

• 題目:指數訊號

• 目標:說明指數訊號之基本定義

程式: ex 3-2 Exponential signal.vi

(23)

習作3-3

題目:複數(Complex number)及正交(Orthogonal)

• 目標:說明並複習複數之表示法與性質

程式:ex 2-3 Addition continuous.vi & ex2-3 Addition discrete.vi

(24)

習作3-4

• 題目:實指數訊號

• 目標:說明實指數訊號之定義與意涵

程式:ex 3-4 exponential signal (continuous).vi

& 3-4 exponential signal (discrete).vi Case 1:當a為正數時(a>0), 隨 t 的增加成指數遞增。

Case 2:當a為負數時(a<0), 隨 t 的增加成指數遞減。

Case 3:當a為零時(a=0),,亦即是任何時間 t 下訊號值皆為常數B。

(25)

有何不同?

ex 3-4 exponential signal (multi).vi

(26)

End and Question?

(27)
(28)
(29)
(30)
(31)
(32)

參考文獻

相關文件

„ 無線射頻識別 (Radio Frequency Identification, RFID) 系統近年來越來越普及,應用範圍如供

無線射頻識別 (Radio Frequency Identification, RFID) 系統近年來越來越普及,應用範圍如供

(approximation)依次的進行分解,因此能夠將一個原始輸入訊號分 解成許多較低解析(lower resolution)的成分,這個過程如 Figure 3.4.1 所示,在小波轉換中此過程被稱為

另外價格也是企業對於消費者傳達的另一種訊號,因為價格被視為最重要的外部

另外價格也是企業對於消費者傳達的另一種訊號,因為價格被視為最重要的外部

傳統的 RF front-end 常定義在高頻無線通訊的接收端電路,例如類比 式 AM/FM 通訊、微波通訊等。射頻(Radio frequency,

Hanning Window 可用來緩和輸入訊號兩端之振幅,以便使得訊號呈現 週期函數的形式。Hanning Window

如圖 3.2-1 所示,左邊 port 為 Input 訊號,右邊六個 port 為 Output 訊號。若訊號 要由 Output1 當作輸出時,SW1、SW2、SW5 的 Switch 必頇讓路徑導通,而第三級