• 沒有找到結果。

1. 目前實驗溫度都固定於 70℃,建議可做不同溫度下的固定情況。

2. 使用活性碳的固定方式會讓金屬與電子媒介體分離而降低其效果,建 議將金屬與電子媒介體同樣固定於活性碳,使電子媒介體與金屬能直 接接觸而增加去除率。

參考文獻

環境工程學研究所,碩士論文。

Aqueous-phase dechlorination of toxic chloroethylenes by vitamin B12

cobalt center: Conventional and polypyrrole film-based electrochemical studies. Ind. Eng. Chem. Res. 43, 1049-1055.

An, T., Yang, H., Li, G., Song, W., Cooper, W.J. and Nie, X. (2010) Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Appl. Catal., B Environ. 94, 288–294.

Blaser, H.U. and Halpern, J. (1979) Reactions of vitamin B12r with organichalides. J. Am. Chem. Soc., 102, 1684-1689.

Cao, J., Xu, R., Tang, H., Tang, S. and Cao, M. (2011) Synthesis of monodispersed CMC-stabilized Fe–Cu bimetal nanoparticles for in situ reductive dechlorination of 1, 2, 4-trichlorobenzene. Sci. Total Environ.

409, 2336–2341.

Chaplin, B.P., Reinhard, M., Schneider, W.F., Schüth, C., Shapley, J.C., Strathmann, T.J. and Werth, C.J. (2012) Critical Review of Pd-Based Catalytic Treatment of Priority Contaminants in Water. Environ. Sci.

Technol. 46, 3655–3670.

Chen, L.H., Huang C.C. and Lien H.L. (2008) Bimetallic iron–aluminum particles for dechlorination of carbon tetrachloride. Chemosphere, 73, 692-697.

Choi, J., Choi, K. and Lee, W. (2009) Effects of transition metal and sulfide on the reductive dechlorination of carbon tetrachloride and 1,1,1-trichloroethane by FeS. J. Hazard. Mater. 162, 1151-1158.

Dror, I., Baram, D. and Berkowitz, B. (2005) Use of Nanosized Catalysts for Transformation of chloro-organic pollutants. Environ. Sci. Technol. 39, 1283-1290.

Dror, I. and Schlautman, M.A. (2003) Role of Metalloporphyrin Core Metals in the Mediated Reductive Dechlorination of Tetrachloroethylene.

Environ. Toxicol. Chem. 22, 525-533.

Elliott, D. W., Lien, H. L., Zhang, W. X. (2008) Zerovalent Iron Nanoparticles for Treatment of Ground Water Contaminated by Hexachlorocyclohexanes. J. Environ. Qual., 37, 2192-201.

Feng, J. and Lim, T.T. (2005) Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles:

comparison with commercial micro-scale Fe and Zn. Chemosphere, 59, 1267–1277.

Flury, B., Frommer, J., Eggenberger, U., Mader, U., Nachtegaal, M. and Kretzschmar, R. (2009) Assessment of long-term performance and chromate reduction mechanisms in a field scale permeable reactive barrier. Environ. Sci. Technol. 43, 6786–6792.

Gavaskar, A.R., Gupta, N., Sass, B.N., Janosy, R.J. and O’sullivan, D. (1998) Permeable barriers for ground water remediation design, construction, and monitoring. Battele Press. USA.

Grittini, C., Malcomson, M., Fernando, Q. and Korte, N. (1995) Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe

bimetallic system. Environ. Sci. Technol. 29, 2898-2900.

Higgins, M.R. and Olson, T.M. (2009) Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation. Environ.

Sci. Technol. 43, 9432–9438.

Hisaeda, Y., Shimakoshi, H. and Masuko, T. (2003) Dechlorination Reaction Mediated by Vitamin B12 Modified Electrode. In Annual research report 2003 I, pp.177.

Hosseini, S.M., Ataie-Ashtiani, B. and Kholghi, M. (2011) Nitrate reduction by nano-Fe/Cu particles in packed column. Desalination, 276, 214-221.

http://oceanworld.tamu.edu/resources/environment-book/groundwaterremedi-ation.html

Huang, C.C., Lo, S.L. and Lien, H.L. (2013) Synergistic effect of zero-valent copper nanoparticles on dichloromethane degradation by vitamin B12

under reducing condition. Chem. Eng. J. 219, 311-318.

Jiao, Y., Qiu, C., Huang, L., Wu, K., Ma, H., Chen, S., Ma L. amd Wu D.

(2009) Reductive dechlorination of carbon tetrachloride by zero-valent iron and related iron corrosion. Appl. Catal., B: Environ. 91, 434-440.

Jin, L., Lu, P., You, H., Chen, Q. and Dong, J. (2009) Vitamin B12 diffusion and binding in crosslinked poly(acrylic acid)s and poly(acrylic acid-co-N-vinyl pyrrolidinone)s. Int. J. Pharm. 371, 82-88.

Kalyanasundaram, K. and Neumann-Spallart, M. (1982) Photophysical and redox properties of water-soluble porphyrins in aqueous media. J. Php.

Chem. 86, 5163-5169.

Keenan, C.R. and Sedlak, D.L. (2008) Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ Sci

Technol. 42, 6936-6941.

Khan, M.A., Kim, S.W., Rao, R.A.K., Abou-Shanab, R.A.I., Bhatnagar, A., Song, H. and Jeon, B.H. (2010) Adsorption studies of Dichloromethane on some commercially available GACs: Effect of kinetics, thermodynamics and competitive ions. J. Hazard. Mater. 178, 963-972.

Kim, H., Hong, H.J., Jung, J., Kim, S.H. and Yang, J.W. (2010) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J. Hazard. Mater. 176, 1038-1043.

Kim, S., Park, H., and Choi, W. (2004) Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW12O40

3- vs TiO2.

J. Phys. Chem. B, 108, 6402-6411.

Kirschling, T.L., Gregory, K.B., Minkley, E.G. Jr., Lowry, G.V. and Tilton R.D. (2010) Impact of Nanoscale Zero Valent Iron on Geochemistry and Microbial Populations in Trichloroethylene Contaminated Aquifer Materials. Environ. Sci. Technol. 44, 3474–3480.

Kozhevnikov, I.V. (1998) Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chem.

Rev. 98, 171-198.

Lee, W.S., Che, C.H., Jhuo, Y.S. and Lien, H.L. (2006) Effect of iron content

on bimetallic iron–aluminum particles for dechlorination of carbon tetrachloride. J. Chin. Inst. Environ. Eng. 16, 159–166.

Lee, C., Keenan, C.R., Sedlak, D.L. (2008) Polyoxometalate-enhanced oxidation of organic compounds by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen. Environ. Sci. Technol. 42, 4921-4926.

Lee, M. and Oh, J. (2010) Sonolysis of trichloroethylene and carbon tetrachloride in aqueous solution. Ultrason. Sonochem. 17, 207-212.

Lexa, D. and Saveant, J.M. (1983) The electrochemistry of vitamin B12.

Acc.Chem. Res. 16, 235-243.

Li, X.Q. and Zhang, W.X. (2007) Sequestration of Metal Cations with Zerovalent Iron NanoparticlessA Study with High Resolution X-ray Photoelectron Spectroscopy (HR-XPS). J. Phys. Chem. C. 111, 6939-6946.

Liang, L., Korte, N., Gu, B., Puls, R. and Reeter, C. (2000) Geochemical and microbial reactions affecting the long-term performance of in situ ‘‘iron barriers’’. Adv. Environ. Res. 4, 273–286.

Lien, H.L., Yu, C.C. and Lee, Y.C. (2010) Perchlorate removal by acidified zero-valent aluminum and aluminum hydroxide. Chemosphere, 80, 888–893.

Lien, H.L. and Zhang, W.X. (1999) Dechlorination of chlorinated methanes in aqueous solutions using nanoscale bimetallic particles. J. Environ.

Eng. 125, 1042-1047.

Lien, H.L. and Zhang, W.X. (2002) Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al. Chemosphere, 49, 371–378.

Lien, H.L. and Zhang, W.X. (2005) Hydrodechlorination of chlorinated

McCauley, K.M., Pratt, D.A., Wilson, S.R., Shey, J., Burkey, T.J. and Donk, W.A. (2005) Properties and reactivity of chlorovinylcobalamin and vinylcobalamin and their implications for vitamin B12-catalyzed reductive dechlorination of chlorinated alkenes. J. AM. Chem. SOC. 127, 1126-11436.

Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C. and Fatta-Kassinos, D. (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 47, 957-995.

Muftikian, R., Nebesny, k., Fernando, Q. and Korte, N. (1996) X-ray photoelectron spectra of the palladium-iron bimetallic surface used for the rapid dechlorination of chlorinated organic environmental contaminants. Environ. Sci. Technol. 30, 3593-3596.

O’Hannesin, S.F. and Gillham, R.W. (1998) Long-term performance of an in situ “Iron Wall” for remediation of VOCs. Ground Water, 36, 164-172.

Phillips, D.H., Nooten, T.V., Bastiaens, L. Russell, M.I., Dickson, K., Plant, S., Ahad, J.M.E., Newton, T., Elliot, T. and Kalin, R.M. (2010) Ten year performance evaluation of a field-scale zero-valent iron permeable reactive barrier installed to remediate trichloroethene contaminated groundwater. Environ. Sci. Technol. 44, 3861–3869.

Puls, R.W., Blowes, D.W. and Gillham R.W. (1999) Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. J. Hazardous Mat. 68, 109-124.

Puls, R.W., Powell, R.M., Blowes, D.W., Gillham, R.W., Schultz, D., Sivavec, T., Vogan, J.L., Powell, P.D. and Landis, R. (1998) Permeable Reactive Barrier Technologies for Contaminant Remediation.

EPA/600/R-98-125, Office of Research and Development, Washington, DC.

Schrick, B., Blough, J.L., Jones, A.D. and Mallouk T.E. (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-Iron nanoparticles. Chem. Mater. 14, 5140-5147.

Shih, Y.H., Hsu, C.Y. and Su, Y.F. (2011) Reduction of hexachlorobenzene by nanoscale zero-valent iron: Kinetics, pH effect, and degradation mechanism. Sep. Purif. Technol. 76, 268-274

Teerakun, M., Reungsang, A., Lin, C.J. and Liao, C.H. (2011) Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater. J. Environ. Sci. 23, 560-567.

United States Environmental Protection Agency (USEPA) (2008) Nanotechnology for Site Remediation Fact Sheet, EPA 542-F-08-009.

Wei, Y.T., Wu, S.C., Chou, C.M., Che, C.H., Tsai, S.M. and Lien, H.L. (2009) Influence of Nanoscale Zero-Valent Iron on Geochemical Properties of Groundwater and Vinyl Chloride Degradation: A Field Case Study.

Water Researc. 44, 131-140.

Wenying, X.U., Ping, L.I., and Jinhong, F.A.N. (2008) Reduction of nitrobenzene by the catalyzed Fe/Cu process. J. Environ. Sci. 20, 915-921.

Wood, J.M., Kennedy, F.S. and Wolfe, R.S. (1968) The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12.

Biochemistry, 7, 1707-1713.

Yang, H., Li, G., An, T., Gao, Y., Fu, J. (2010) Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs. Catal. Today, 153, 200–207.

Yang, M.X., Sarkar, S. and Bent, B.E. (1997) Degradation of multiply-chlorinated hydeocarbons on Cu(100). Langmuir, 13, 229-242.

Yuan, R., Zheng, J., Guan, R. and Zhao, Y. (2005) Surface characteristics and photocatalytic activity of TiO2 loaded on activated carbon fibers. Colloid

Surf. A-Physicochem. Eng. Asp. 254, 131-136.

Yue, B., Zhou, Y., Xu, J., Wu, Z., Zhang, X., Zou, Y. and Jin, S. (2002) Photocatalytic Degradation of Aqueous 4-Chlorophenol by Silica-Immobilized Polyoxometalates. Environ. Sci. Technol. 36, 1325-1329.

Zhang, X., Deng, B., Guo, J., Wang, Y., Lan, Y. (2011) Ligand-assisted degradation of carbon tetrachloride by microscale zero-valent iron. J.

Environ. Manage. 92, 1328-1333.

Zhang, W.X., Wang, C.B. and Lien, H.L. (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis

Today. 40, 387-395.

Zolla, V., Freyria, F.S., Sethi, R., Molfetta, A.D., Torino, P.D. (2009) Hydrogeochemical and biological processes affecting the long-term performance of an iron-based permeable reactive barrier. J. Environ.

Qual., 38, 897-908.

附錄一 實驗數據

2 0.65

5. 經由 F1 方法固定後去除四氯化碳

2.0 6.15 4.56 2.46

10. 經由 FH5 方法固定後去除四氯化碳

4.0 11.2 10.6

6.0 8.83 9.71

8.0 8.71 8.36

24.0 6.22 5.00

13. 經由 FAC1 方法固定後去除四氯化碳

Time (hr)

CCl4 (mg/L)

PAC-Cu/Al B12-PAC-Cu/Al

0 20.0 20.0

1 5.19 6.63

3 5.49 5.28

4 5.41 4.32

5 5.25 3.88

附錄二 口試委員意見回覆

什麼?

2. 圖 4-29 為何用這樣的結果產生?

假設等到 12 小時再來做實驗,

這樣材料是否可行?

他經過一段時間會產生去除效率,有延遲 的情況發生,但是 12 小時之後再來做實 驗,認為此方法並不可行,因為放置時間 過長還是會降低其去除效率。

3. 圖 4-40 所代表意思?是否成功固 定?

固定後的 B12有添加與沒添加沒有差別,說 明沒有加速去除效率,因此並未成功固定。