• 沒有找到結果。

一、 具有間隔介入之特定性練習組別,相較於無間隔介入之「特定」組,在動作的準 確性與穩定性方面,無助於空間性的動作表現。

二、 具有間隔介入之特定性練習組別,相較於無間隔介入之「特定」組,在動作的準 確性方面,有助於空間性的動作學習。

第二節 建議

依據本研究的結論,分為:一、未來研究方向;二、研究之應用兩部分提出以下建 議。

一、未來研究方向:

本研究對間隔效應以及特定性練習的探討,僅是動作學習領域中,練習安排相關

54

議題的一小部分,且針對本研究的內容,未來仍有許多變項可以嘗試探討與修正,使間 隔效應與特定性練習的相關研究更趨完善。依據本文之內容,未來可再進一步探討的研 究方向如下:

1. 本研究發現,空間性動作的相關實驗在獲得期各階段,若間隔介入的形式為變異動 作的練習,則進行統計分析時,會出現因不同目標距離所造成的誤差值起伏狀態,

為考驗相同標準工作的動作的誤差值,除了如本研究將獲得期的動作誤差值換算成 百分比的方式外,亦可增加練習的次數,僅比較不同組別試作相同目標距離的誤差 值,以更明確地呈現不同組別的準確性與穩定性。

2. 未來可嘗試在變異練習情境下,透過不同形式的間隔介入,來觀察間隔的介入對變 異練習在空間性動作表現與學習之影響。

3. 本研究發現,間隔的介入雖不利於獲得期當下的動作表現,但有助於長時間的動作 學習,因此推測間隔的介入是一種學習變項。建議未來可以延長間隔介入的時間、

保留測驗的天數以及保留測驗的試作次數,來觀察長時間的間隔介入與長時間的保 留動作學習的效果,並透過長、短期記憶的觀點來探討之。

4. 間隔的介入確實影響動作表現與學習甚巨,因此,未來可嘗試設計更多元的間隔介 入形式,來找出最有效提升動作表現與學習的練習安排內容。

5. 未來可嘗試將年齡納入檢驗範圍,進行對不同年齡層對象的檢驗,並設定發展的等

55

級,以有效控制影響實驗結果的變項,找出最適合不同年齡層的練習安排內容。

6. 本研究以簡單實驗室的工作來檢驗各組的動作表現與學習,無法廣泛推論至真實世 界的複雜工作,因此,未來研究可嘗試採用日常生活中的活動或工作來進行,以提 高研究的生態效度。或是增加質性訪談部分,以更深入了解學習者的內在想法與策 略運用。

二、實務應用:

在動作技能的教學情境中,間隔的介入能提升學習者長時間的動作保留效果,因此 未來在課程內容的設計上,宜嘗試在同一項目的練習中增長間隔的時間,且單純的休息 時間又比進行變異的練習項目更能有效提升長時間的學習效果。

56

Adams, J. A., & Dijkstra, S. (1966). Short-term memory for motor responses. Journal of Experimental Psychology, 71, 314-318.

Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111-149.

Adams, J. A. (1987). Historical review and appraisal of research on the learning, retention, and transfer of human motor skills. Psychological Bulletin, 101, 41-74.

Arthur, M. G., & Steven, M. S. (1981). Spacing repetitions and solving problems are not the same. Journal of Verbal Learning and Verbal Behavior, 20, 110-119.

Bachman, J. C. (1961). Specificity vs. generality in learning and performing two large muscle motor tasks. Research Quarterly, 37, 176-186.

57

Balota, D. A., Duchen, J. M., & Paullin, R. (1989). Age-related difference in the impact of pacing, lag, and retention interval. Psychology and Aging, 4, 3-9.

Bahrick, H. P., Bahrick, L. E., Bahrick, A. S., & Bahrick, P. E. (1993). Maintenance of foreing language vocabulary and the spacing effect. Psychological Science,4, 316-321.

Barnett, M. L., Ross, D., Schmidt, R. A., & Todd, B. (1973). Motor skill learning and the specificity of training principle. Research Quarterly, 44, 440-447.

Blandin, Y., Toussaint, L., & Shea, C. H. (2008). Specific of practice: Interaction between concurrent sensory information and terminal feedback. Journal of Experimental Psychology: Learning, Memory, and Cognition ,34, 994-1000.

Catalano, J. F., & Kleiner, B. M. (1984). Distant transfer in coincident timing as a function of variability of practice. Perceptual and Motor Skills, 58, 851-856.

Cepeda, N. J.,Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological Science, 19, 1095-1102.

Cuddy, L. J., & Jacoby. L. L. (1982). When forgetting helps memory: An analysis of repetition effects. Journal of Verbal Learning and Verbal Behavior, 21, 451-467.

Dempster, F. N. (1988). The spacing effect: A case study in the failure to apply the results of psychological research. American Psychologist, 43, 627-634.

Fairbrother, J.T., Shea, J.B., & Marzilli, T.S. (2007). Repeated retention testing effects do not generalize to a contextual interference protocol. Research Quarterly for Exercise and Sport, 78,465.

Flanagan, H., & Spurgeon, P. (1996). Public sector managerial effectiveness: Theory and practice in the national health service. Bristol, PA: Open University Press.

Glenberg, A, M. (1979). Component-levels theory of the effects of spacing of repetitions on recall and recognition. Memory & Cognition, 7, 95-112.

Glenberg, A. M., & Steven, M. (1981). Spacing repetitions and solving problems are not the same. Journal of Verbal Learning and Verbal Behavior, 20, 110-119.

58

Green, R. L. (1990). Specing effects on implicit memory test. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 1004-1011.

Henry, F. M. (1968). Specificity vs. generality in learning motor skill. In R.C. Brown & G.S.

Kenyon (Eds.), Classical studies on physical activity (pp. 341-340). Englewood Cliffs, NJ: Prentice Hall. (Original work published in 1958)

Khan, M. A., Frank, I. M., & Goodman, D. (1998). The effect of practice on component submovements is dependent on the availability of visual feedback. Journal of Motor Behavior, 32, 227-240.

Krigolson, O. E., & Tremblay, L. (2009). The amount of practice really matters: Specificity of practice may be valid only after sufficient practice. Research Quarterly for Exercise and Sport, 80, 197-204.

Lloyd, R. P., Richard, W., Meredith, K., & Dorothy, S. (1963). Effect of spacing presentations on retention of a paired associate over short intervals. Journal of Experimental

Psychology, 66, 206-209.

Lorraine, G. A. (1979). The perception of time. Perception and Psychophysics, 26, 340-354.

Magill, R. A. (2004). Motor learning and control: Concepts and applications (7th ed.). New York: McGraw-Hill.

Magill, R. A. (1998). Knowledge is more than we can talk about: Implicit learning in motor skill acquisition. Research Quarterly for Exercise and Sport. 69, 104-110.

Magill, R. A., & Hall, K. G. (1990). A review of the contextual interaction effect in motor skill acquisition. Human Movement Science, 9, 241-289.

Mentzer, J. T., & Konrad, B. P. (1991). An efficiency/effectiveness approach to logistics performance analysis. Journal of Business Logistics, 12, 33-51.

Moxely, S. E. (1979). Schema: The variability of practice hypothesis. Journal of Motor Behavior, 11, 65-70.

59

Newell, K. M., & Shapiro, D. C. (1976). Vailability of practice and transfer of training: Some evidence toward a schema view of motor learning. Journal of Motor Behavior, 8,

233-243.

Pew, R. W. (1966). Acquisition of hierarchical control over the temporal organi-zation of a skill. Journal of Experimental Psychology, 71, 764-771.

Proteau, L. (1992). On the specificity of learning and the role of visual information for movement control. In L. Proteau & D. Elliote (Eds.), Vision and motor control (pp.

67-103). Amsterdam: North Holland.

Proteau, L., Marteniuk, R. G., Girouard, Y., & Dugas, C. (1987). On the type of information used to control and learn an aiming movement after moderate and extensive training.

Human Movement Science, 6, 181-199.

Proteau, L., Trembaly, L., & DeJaeger, D. (1998). Practice dose not diminish the role of visual information in online control of a precision walking task: Support for the specificity of practice hypothesis. Journal of Motor Behavior, 30, 143-150.

Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225-260.

Schmidt, R. A. (1991). Frequent augmented feedback can degrade learning: Evidence and interpretations. In G. E. Stelmach & J. Requin (Eds.), Tutorials in motor neuroscience (pp. 59-75). Amsterdam: Elsevier Science.

Schmidt, R. A., & Lee, T. D. (2005). Motor control and learning: A behavioral emphasis (4th ed.). Champaign, IL: Human Kinetics.

Schmidt, R. A., & Wrisberg, C. A. (2000). Motor learning and performance: A problem-based learning approach (2nd ed.). Champaign, IL: Human Kinetics.

Shea, C. H., & Kohl, R. M. (1990). Specificity and variability of practice. Research Quarterly for Exercise and Sport, 61, 169-177.

Shea, J. B., & Morgan, R. L. (1979). Contextual interference effect on the acquisition, retention and transfer of motor skill. Journal of Expermental Psychology: Human Learning and Memory, 5, 179-181.

60

Shea, C. H., Shebilske, W. L., & Worchel, S. (1993). Motor learning and control. Englewood Cliffs, NJ: Prentice Hall.

Shea, C. H., Wulf, G., & Whitacre, C. (1999). Enhancing training efficiency and

effectiveness through the use of dyad training. Journal of Motor Behavior, 31, 119-125.

Singer, R. N. (1966). Transfer effects and ultimate success in archery due to degree of difficulty of the initial learning. Research Quarterly, 37, 532-539.

Singer R. N. (1980). Motor learning and human performance: An application to motor skills and movement behaviors (2nd ed.). New York, NY: Macmillan.

Sudit, E. F. (1996). Effectiveness, quality and efficiency: A management oriented approach.

Norwell, MA: Kluwer Academic.

Tawney, J. W., & Gast, D. L. (1984). Single-subject research in special education. Columbus, OH: Merrill.

Tremblay, L., & Proteau, L. (1998). Specificity of practice: The case of prowerlifting.

Research Quarterly for Exercise and Sport, 69, 284-289.

Underwood, B. J. (1970). A breakdown of the total-time law in free-recall learning. Journal of Verbal Learning and Verbal Behavior, 9, 573-580.

Van der Meulen, P. R. H., & Spijkerman, G. (1985). The logistics input-output model and its application. International Journal of Physical Distribution and Materials Management, 15, 17-25.

Winstein, C. J., & Schmidt, R. A. (1990). Reduced frequency of knowledge of results

enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory, and Connition, 16, 677-691.

Wrisberg, C. A., & Ragsdale, M. R. (1979). Further tests of Schmidt’s schema theory:

Development of a schema for a coincident timing task. Journal of Motor Behavior, 11, 159-166.

61

Wulf, G., Lee, T. D., & Schmidt, R. A. (1994). Reducing knowledge of results about relative versus absolute timing: Differential effects on learning. Journal of Motor Behavior, 26, 362-369.

Yoshida, M., Cauraugh, J. H., & Chow, J. W. (2004). Specificity of practice, visual

information, and intersegmental dynamics in rapid-aiming limb movements. Journal of Motor Behavior, 36, 281-290.

62

附 錄

63

64

附錄二

表 1 線性移動工作之分組動作內容

(動作距離:A1=34 公分;A2=23 公分;底數為試作次數)

組別 獲得期 保留測驗

特定+間隔 𝐀𝟏𝟏 𝐀𝟏𝟐 𝐀𝟏𝟑 𝐀𝟒𝟏 𝐀𝟓𝟏 … 𝐀𝟏𝟑𝟎 𝐀𝟏𝟏 𝐀𝟏𝟐 𝐀𝟏𝟑 𝐀 𝟒𝟏 𝐀𝟏𝟓

特定 𝐀𝟏𝟏 𝐀𝟏𝟐 𝐀𝟏𝟑 𝐀𝟏𝟒 𝐀𝟏𝟓 𝐀𝟏𝟔 𝐀𝟏𝟕 𝐀𝟏𝟖 𝐀𝟏𝟗 𝐀𝟏𝟏𝟎 𝐀𝟏𝟏𝟏 𝐀𝟏𝟐 𝟏 𝐀𝟏𝟑𝟏 𝐀𝟏𝟏𝟒 𝐀𝟏𝟏𝟓 𝐀𝟏𝟏𝟔 𝐀𝟏𝟕𝟏 … 𝐀𝟏𝟏𝟎𝟐 𝐀𝟏𝟏 𝐀𝟏𝟐 𝐀𝟏𝟑 𝐀 𝟒𝟏 𝐀𝟏𝟓

序列變異 𝐀 𝟏𝟏 𝐀𝟐𝟏 𝐀𝟏𝟐 𝐀𝟐𝟐 𝐀𝟏𝟑 𝐀𝟐𝟑 𝐀𝟏𝟒 𝐀𝟒𝟐 𝐀𝟏𝟓 𝐀𝟐𝟓 𝐀𝟏𝟔 𝐀𝟐𝟔 𝐀𝟏𝟕 𝐀𝟐𝟕 𝐀𝟏𝟖 𝐀𝟐𝟖 𝐀𝟏𝟗 … 𝐀𝟏𝟓𝟒 𝐀𝟏𝟏 𝐀𝟏𝟐 𝐀𝟏𝟑 𝐀 𝟒𝟏 𝐀𝟏𝟓

65

66

67

68

69

70